-
1
-
-
21144479953
-
The Hele-Shaw problem and area-preserving curve-shortening motions
-
X. Chen. The Hele-Shaw problem and area-preserving curve-shortening motions. Arch. Ration. Mech. Analysis 123 (1993), 117-151.
-
(1993)
Arch. Ration. Mech. Analysis
, vol.123
, pp. 117-151
-
-
Chen, X.1
-
2
-
-
0001649885
-
Existence, uniqueness and regularity of classical solutions of the Mulllins-Sekerka problem
-
X. Chen, J. Hong and F. Yi. Existence, uniqueness and regularity of classical solutions of the Mulllins-Sekerka problem. Commun. Partial Diff. Eqns 21 (1996), 1705-1727.
-
(1996)
Commun. Partial Diff. Eqns
, vol.21
, pp. 1705-1727
-
-
Chen, X.1
Hong, J.2
Yi, F.3
-
3
-
-
0000851461
-
Global solutions for small data to the Hele-Shaw problem
-
P. Constantin and M. Pugh. Global solutions for small data to the Hele-Shaw problem. Nonlinearity 6 (1993), 393-415.
-
(1993)
Nonlinearity
, vol.6
, pp. 393-415
-
-
Constantin, P.1
Pugh, M.2
-
4
-
-
84967787229
-
The ill-posed Hele-Shaw model and the Stefan problem for supercooled water
-
E. di Benedetto and A. Friedman. The ill-posed Hele-Shaw model and the Stefan problem for supercooled water. Trans. Am. Math. Soc. 282 (1984), 183-204.
-
(1984)
Trans. Am. Math. Soc.
, vol.282
, pp. 183-204
-
-
Di Benedetto, E.1
Friedman, A.2
-
5
-
-
0000694313
-
Evolution d'une interface par capillarité et diffusion de volume. 1. Existence locale en temps
-
J. Duchon and R. Robert. Evolution d'une interface par capillarité et diffusion de volume. 1. Existence locale en temps. Ann. Inst. H. Poincaré 1 (1984), 361-378.
-
(1984)
Ann. Inst. H. Poincaré
, vol.1
, pp. 361-378
-
-
Duchon, J.1
Robert, R.2
-
6
-
-
0001238859
-
Existence results for diffusive surface motion laws
-
C. M. Elliott and H. Garcke. Existence results for diffusive surface motion laws. Adv. Math. Sci. Applic. 7 0 (1997), 467-490.
-
(1997)
Adv. Math. Sci. Applic.
, vol.7
, pp. 467-490
-
-
Elliott, C.M.1
Garcke, H.2
-
7
-
-
84971155357
-
A variational inequality approach to Hele-Shaw flow with a moving boundary
-
C. M. Elliott and V. Janovsky. A variational inequality approach to Hele-Shaw flow with a moving boundary. Proc. R. Soc. Edinb. A 88 (1981), 93-107.
-
(1981)
Proc. R. Soc. Edinb. A
, vol.88
, pp. 93-107
-
-
Elliott, C.M.1
Janovsky, V.2
-
8
-
-
0031478022
-
Classical solutions of multi-dimensional Hele-Shaw flows
-
J. Escher and G. Simonett. Classical solutions of multi-dimensional Hele-Shaw flows. SIAM J. Math. Analysis 28 (1997), 1028-1047.
-
(1997)
SIAM J. Math. Analysis
, vol.28
, pp. 1028-1047
-
-
Escher, J.1
Simonett, G.2
-
12
-
-
0000872629
-
Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows
-
B. Gustafsson. Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows. SIAM J. Math. Analysis 16 (1985), 279-300.
-
(1985)
SIAM J. Math. Analysis
, vol.16
, pp. 279-300
-
-
Gustafsson, B.1
-
13
-
-
84974250737
-
On classical solvability for the Hele-Shaw moving boundary problems with kinetic undercooling regularization
-
Y. E. Hohlov and M. Reissig. On classical solvability for the Hele-Shaw moving boundary problems with kinetic undercooling regularization. Euro. J. Appl. Math. 6 0 (1995), 421-439.
-
(1995)
Euro. J. Appl. Math.
, vol.6
, pp. 421-439
-
-
Hohlov, Y.E.1
Reissig, M.2
-
15
-
-
51249164765
-
A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane
-
M. Reissig and L. von Wolfersdorf. A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane. Arkiv Matematik 31 (1993), 101-116.
-
(1993)
Arkiv Matematik
, vol.31
, pp. 101-116
-
-
Reissig, M.1
Von Wolfersdorf, L.2
-
16
-
-
0022888394
-
Viscous fingering in Hele-Shaw cells
-
P. G. Saffman. Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173 (1986), 73-94.
-
(1986)
J. Fluid Mech.
, vol.173
, pp. 73-94
-
-
Saffman, P.G.1
-
17
-
-
0007779451
-
Viscous fingering in an anisotropic Hele-Shaw cell
-
S. K. Sarkar and D. Jasnow. Viscous fingering in an anisotropic Hele-Shaw cell. Phys. Rev. A 39 (1989), 5299-5307.
-
(1989)
Phys. Rev. A
, vol.39
, pp. 5299-5307
-
-
Sarkar, S.K.1
Jasnow, D.2
-
18
-
-
5244234639
-
Dense-branching morphology and the radial Hele-Shaw cell driven at a constant flux
-
C. Yeung and D. Jasnow. Dense-branching morphology and the radial Hele-Shaw cell driven at a constant flux. Phys. Rev. A 41, 891-893.
-
Phys. Rev. A
, vol.41
, pp. 891-893
-
-
Yeung, C.1
Jasnow, D.2
|