메뉴 건너뛰기




Volumn 4, Issue 2, 2005, Pages 407-436

Generalized hénon map and bifurcations of homoclinic tangencies

Author keywords

H non map; Homoclinic taugendes; Normal forms; Numerical continuation

Indexed keywords

GEOMETRY; NUMERICAL METHODS;

EID: 33644897897     PISSN: 15360040     EISSN: 15360040     Source Type: Journal    
DOI: 10.1137/04060487X     Document Type: Article
Times cited : (39)

References (34)
  • 1
    • 0000697407 scopus 로고
    • Invariant tori, their break-down and stochasticity
    • AMS, Providence, RI
    • V. S. AFRAIMOVICH AND L. P. SHILNIKOV, Invariant tori, their break-down and stochasticity, in Amer. Math. Soc. Transl. 149, AMS, Providence, RI, 1991, pp. 201-211.
    • (1991) Amer. Math. Soc. Transl. , vol.149 , pp. 201-211
    • Afraimovich, V.S.1    Shilnikov, L.P.2
  • 2
    • 0001852216 scopus 로고
    • Originally published Gorky State University, Gorky, Russia
    • Originally published in Methods of Qualitative Theory of Differential Equations, Gorky State University, Gorky, Russia, 1983, pp. 3-26.
    • (1983) Methods of Qualitative Theory of Differential Equations , pp. 3-26
  • 3
    • 0000009552 scopus 로고
    • Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study
    • D. G. ARONSON, M. A. CHORY, G. R. HALL, AND R. P. MCGEHEE, Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study, Comm. Math. Phys., 83 (1982), pp. 303-354.
    • (1982) Comm. Math. Phys. , vol.83 , pp. 303-354
    • Aronson, D.G.1    Chory, M.A.2    Hall, G.R.3    Mcgehee, R.P.4
  • 5
    • 0000997063 scopus 로고    scopus 로고
    • The numerical computation of homoclinic orbits for maps
    • W.-J. BEYN AND J.-M. KLEINKAUF, The numerical computation of homoclinic orbits for maps, SIAM J. Numer. Anal., 34 (1997), pp. 1207-1236.
    • (1997) SIAM J. Numer. Anal. , vol.34 , pp. 1207-1236
    • Beyn, W.-J.1    Kleinkauf, J.-M.2
  • 6
    • 0002320384 scopus 로고
    • Bifurcations in two-parameter family of conservative mappings that are close to the Hénon map
    • V. S. BIRAGOV, Bifurcations in two-parameter family of conservative mappings that are close to the Hénon map, Selecta Math. Soviet., 9 (1990), pp. 273-282.
    • (1990) Selecta Math. Soviet. , vol.9 , pp. 273-282
    • Biragov, V.S.1
  • 7
    • 0002323856 scopus 로고
    • Originally published Gorky State University, Gorky, Russia
    • Originally published in Methods of Qualitative Theory of Differential Equations, Gorky State University, Gorky, Russia, 1987, pp. 10-24.
    • (1987) Methods of Qualitative Theory of Differential Equations , pp. 10-24
  • 8
    • 0006963160 scopus 로고    scopus 로고
    • Towards global models near homoclinic tangencies of dissipative diffeomorphisms
    • H. BROER, C. SIMÓ, AND J. C. TATJER, Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity, 11 (1998), pp. 667-770.
    • (1998) Nonlinearity , vol.11 , pp. 667-770
    • Broer, H.1    Simó, C.2    Tatjer, J.C.3
  • 10
    • 0039592690 scopus 로고    scopus 로고
    • Generalized Hénon maps: The cubic diffeomorphisms of the plane
    • H. R. DULLIN AND J. D. MEISS, Generalized Hénon maps: The cubic diffeomorphisms of the plane, Phys. D, 143 (2000), pp. 262-289.
    • (2000) Phys. D , vol.143 , pp. 262-289
    • Dullin, H.R.1    Meiss, J.D.2
  • 11
    • 84974281116 scopus 로고
    • Dynamical properties of plane polynomial automorphisms
    • S. FRIEDLAND AND J. MILNOR, Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems, 9 (1989), pp. 67-99.
    • (1989) Ergodic Theory Dynam. Systems , vol.9 , pp. 67-99
    • Friedland, S.1    Milnor, J.2
  • 12
    • 79955577320 scopus 로고
    • On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Part 1
    • N. K. GAVRILOV AND L. P. SHILNIKOV, On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Part 1, Math. USSR-Sb., 17 (1972), pp. 467-485.
    • (1972) Math. USSR-Sb , vol.17 , pp. 467-485
    • Gavrilov, N.K.1    Shilnikov, L.P.2
  • 13
    • 84914761829 scopus 로고
    • On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Part 2
    • N. K. GAVRILOV AND L. P. SHILNIKOV, On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Part 2, Math. USSR-Sb., 19 (1973), pp. 139-156.
    • (1973) Math. USSR-Sb , vol.19 , pp. 139-156
    • Gavrilov, N.K.1    Shilnikov, L.P.2
  • 15
    • 33644919788 scopus 로고    scopus 로고
    • Three-dimensional dissipative diffeomorphisms with codimension two homoclinic taugendes and generalized Hénon maps
    • (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhny Novgorod
    • S. V. GONCHENKO, V. S. GONCHENKO, AND J. C. TATJER, Three-dimensional dissipative diffeomorphisms with codimension two homoclinic taugendes and generalized Hénon maps, in Progress in Nonlinear Science, Vol. 1 (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhny Novgorod, 2002, pp. 63-79.
    • (2002) Progress in Nonlinear Science , vol.1 , pp. 63-79
    • Gonchenko, S.V.1    Gonchenko, V.S.2    Tatjer, J.C.3
  • 16
    • 0039355855 scopus 로고
    • Invariants of Ω-conjugacy of diffeomorphisms with a structurally unstable homoclinic trajectory
    • S. V. GONCHENKO AND L. P. SHILNIKOV, Invariants of Ω-conjugacy of diffeomorphisms with a structurally unstable homoclinic trajectory, Ukrainian Math. J., 42 (1990), pp. 134-140.
    • (1990) Ukrainian Math. J. , vol.42 , pp. 134-140
    • Gonchenko, S.V.1    Shilnikov, L.P.2
  • 17
    • 32044452038 scopus 로고    scopus 로고
    • On two-dimensional area-preserving maps with homoclinic taugendes that have infinitely many generic elliptic periodic points
    • S. V. GONCHENKO AND L. P. SHILNIKOV, On two-dimensional area-preserving maps with homoclinic taugendes that have infinitely many generic elliptic periodic points, Notes of St.-Petersburg Steklov Math. Inst., 300 (2003), pp. 155-166.
    • (2003) Notes of St.-Petersburg Steklov Math. Inst. , vol.300 , pp. 155-166
    • Gonchenko, S.V.1    Shilnikov, L.P.2
  • 18
    • 3142659184 scopus 로고    scopus 로고
    • On Newhouse regions with infinitely many stable and unstable tori
    • (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhny Novgorod
    • S. V. GONCHENKO, L. P. SHILNIKOV, AND O. V. STENKIN, On Newhouse regions with infinitely many stable and unstable tori, in Progress in Nonlinear Science, Vol. 1 (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhny Novgorod, 2002, pp. 80-102.
    • (2002) Progress in Nonlinear Science , vol.1 , pp. 80-102
    • Gonchenko, S.V.1    Shilnikov, L.P.2    Stenkin, O.V.3
  • 20
    • 33644914312 scopus 로고    scopus 로고
    • On bifurcations of birth of closed invariant curves in the case of two-dimensional diffeomorphisms with homoclinic tangencies
    • S.V. GONCHENKO AND V. S. GONCHENKO, On bifurcations of birth of closed invariant curves in the case of two-dimensional diffeomorphisms with homoclinic tangencies, Proc. Steklov Inst. Math., 244 (2004), pp. 87-114.
    • (2004) Proc. Steklov Inst. Math. , vol.244 , pp. 87-114
    • Gonchenko, S.V.1    Gonchenko, V.S.2
  • 21
    • 21544445402 scopus 로고    scopus 로고
    • On bifurcations of two-dimensional diffeomorphisms with a homoclinic tangency of manifolds of a "neutral" saddle
    • V. S. GONCHENKO, On bifurcations of two-dimensional diffeomorphisms with a homoclinic tangency of manifolds of a "neutral" saddle, Proc. Steklov Inst. Math., 236 (2002), pp. 86-93.
    • (2002) Proc. Steklov Inst. Math. , vol.236 , pp. 86-93
    • Gonchenko, V.S.1
  • 22
    • 33644896659 scopus 로고    scopus 로고
    • On bifurcations of three-dimensional diffeomorphisms with a homoclinic tangency to a neutral saddle fixed point
    • V. S. GONCHENKO AND I. I. OVSYANNIKOV, On bifurcations of three-dimensional diffeomorphisms with a homoclinic tangency to a neutral saddle fixed point, Notes of St.-Petersburg Steklov Math. Inst., 300 (2003), pp. 167-172.
    • (2003) Notes of St.-Petersburg Steklov Math. Inst. , vol.300 , pp. 167-172
    • Gonchenko, V.S.1    Ovsyannikov, I.I.2
  • 23
    • 0002591468 scopus 로고
    • A two-dimensional mapping with a strange attractor
    • M. HÉNON, A two-dimensional mapping with a strange attractor, Comm. Math. Phys. 50 (1976), pp. 69-77.
    • (1976) Comm. Math. Phys. , vol.50 , pp. 69-77
    • Hénon, M.1
  • 24
    • 0000010680 scopus 로고    scopus 로고
    • Growing 1D and quasi-2D unstable manifolds of maps
    • B. KRAUSKOPF AND H. OSINGA, Growing 1D and quasi-2D unstable manifolds of maps, J. Comput. Phys., 146 (1998), pp. 404-419.
    • (1998) J. Comput. Phys. , vol.146 , pp. 404-419
    • Krauskopf, B.1    Osinga, H.2
  • 29
    • 0003805342 scopus 로고
    • World Scientific, Singapore
    • C. MIRA, Chaotic Dynamics, World Scientific, Singapore, 1987.
    • (1987) Chaotic Dynamics
    • Mira, C.1
  • 30
    • 0031222774 scopus 로고    scopus 로고
    • Some historical aspects of nonlinear dynamics: Possible trends for the future
    • C. MIRA, Some historical aspects of nonlinear dynamics: Possible trends for the future, J. Franklin Inst. B, 334 (1997), pp. 1075-1113.
    • (1997) J. Franklin Inst. B , vol.334 , pp. 1075-1113
    • Mira, C.1
  • 31
    • 51249166490 scopus 로고
    • On quadratic symplectic mappings
    • J. MOSER, On quadratic symplectic mappings, Math. Z., 216 (1994), pp. 417-430.
    • (1994) Math. Z. , vol.216 , pp. 417-430
    • Moser, J.1
  • 32
    • 0043259884 scopus 로고
    • Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: Fractal dimensions and infinitely many attractors
    • Cambridge University Press, Cambridge, UK
    • J. PALIS AND F. TAKENS, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations: Fractal Dimensions and Infinitely Many Attractors, Cambridge Stud. Adv. Math. 35, Cambridge University Press, Cambridge, UK, 1993.
    • (1993) Cambridge Stud. Adv. Math. , vol.35
    • Palis, J.1    Takens, F.2
  • 33
    • 0000462372 scopus 로고
    • How often do simple dynamical processes have infinitely many coexisting sinks?
    • L. TEDESCHINI-LALLI AND J. YORKE, How often do simple dynamical processes have infinitely many coexisting sinks?, Comm. Math. Phys., 106 (1986), pp. 635-657.
    • (1986) Comm. Math. Phys. , vol.106 , pp. 635-657
    • Tedeschini-Lalli, L.1    Yorke, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.