-
1
-
-
0042634954
-
Approximation algorithms for the geometric covering salesman problem
-
E. ARKIN & R. HASSIN (1994). Approximation algorithms for the geometric covering salesman problem. Discrete Appl. Math. 55, 197-218.
-
(1994)
Discrete Appl. Math.
, vol.55
, pp. 197-218
-
-
Arkin, E.1
Hassin, R.2
-
2
-
-
0032156828
-
Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems
-
S. ARORA (1998). Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45, 753-782.
-
(1998)
J. ACM
, vol.45
, pp. 753-782
-
-
Arora, S.1
-
3
-
-
84938061920
-
TSP with neighborhoods of varying size
-
M. DE BERG, J. GUDMUNDSSON, M. J. KATZ, C. LEVCOPOULOS, M. H. OVER-MARS & A. F. VAN DER STAPFEN (2002). TSP with neighborhoods of varying size. In Annual European Symposium on Algorithms, 187-199.
-
(2002)
Annual European Symposium on Algorithms
, pp. 187-199
-
-
De Berg, M.1
Gudmundsson, J.2
Katz, M.J.3
Levcopoulos, C.4
Over-Mars, M.H.5
Van Der Stapfen, A.F.6
-
6
-
-
0003522094
-
Worst-case analysis of a new heuristic for the traveling salesman problem
-
Graduate School of Industrial Administration, Carnegy-Mellon Univ.
-
N. CHRISTOFIDES (1976). Worst-case analysis of a new heuristic for the traveling salesman problem. Technical report, Graduate School of Industrial Administration, Carnegy-Mellon Univ.
-
(1976)
Technical Report
-
-
Christofides, N.1
-
8
-
-
0042880653
-
Approximation algorithms for TSP with neighborhoods in the plane
-
A. DUMITRESCU & J. S. B. MITCHELL (2003). Approximation algorithms for TSP with neighborhoods in the plane. J. Algorithms 48, 135-159.
-
(2003)
J. Algorithms
, vol.48
, pp. 135-159
-
-
Dumitrescu, A.1
Mitchell, J.S.B.2
-
10
-
-
0032108328
-
A threshold of Inn for approximating set cover
-
U. FEIGE (1998). A threshold of Inn for approximating set cover. J. ACM 45, 634-652.
-
(1998)
J. ACM
, vol.45
, pp. 634-652
-
-
Feige, U.1
-
11
-
-
0020097689
-
On the worst-case performance of some algorithms for the asymmetric travelling salesman problem
-
A. FRIEZE, G. GALBIATI & F. MAFFIOLI (1982). On the worst-case performance of some algorithms for the asymmetric travelling salesman problem. Networks 12, 23-39.
-
(1982)
Networks
, vol.12
, pp. 23-39
-
-
Frieze, A.1
Galbiati, G.2
Maffioli, F.3
-
14
-
-
0032019124
-
Watchman routes in the presence of a pair of convex polygons
-
L. GEWALI & S. C. NTAFOS (1998). Watchman routes in the presence of a pair of convex polygons. Inform. Sci. 105, 123-149.
-
(1998)
Inform. Sci.
, vol.105
, pp. 123-149
-
-
Gewali, L.1
Ntafos, S.C.2
-
15
-
-
0041313152
-
A fast approximation algorithm for TSP with neighborhoods
-
J. GUDMUNDSSON & C. LEVCOPOULOS (1999). A fast approximation algorithm for TSP with neighborhoods. Nordic J. Comput. 6, 469-488.
-
(1999)
Nordic J. Comput.
, vol.6
, pp. 469-488
-
-
Gudmundsson, J.1
Levcopoulos, C.2
-
17
-
-
0036039361
-
Vertex cover on 4-regular hyper-graphs is hard to approximate within 2 - ε
-
J. HOLMERIN (2002). Vertex cover on 4-regular hyper-graphs is hard to approximate within 2 - ε. In ACM Symposium on Theory of Computing (STOC), 544-552.
-
(2002)
ACM Symposium on Theory of Computing (STOC)
, pp. 544-552
-
-
Holmerin, J.1
-
18
-
-
84967369352
-
The complexity of approximating the class Steiner tree problem
-
G. Schmidt and R. Berghammer (eds.), Lecture Notes in Comput SCi. 570, Springer
-
E. IHLER (1992). The complexity of approximating the class Steiner tree problem. In Graph-Theoretic Concepts in Computer Science, G. Schmidt and R. Berghammer (eds.), Lecture Notes in Comput SCi. 570, Springer, 85-96.
-
(1992)
Graph-theoretic Concepts in Computer Science
, pp. 85-96
-
-
Ihler, E.1
-
20
-
-
0028514351
-
On the hardness of approximating minimization problems
-
C. LUND& M. YANNAKAKIS (1994). On the hardness of approximating minimization problems. J. ACM 41, 960-981.
-
(1994)
J. ACM
, vol.41
, pp. 960-981
-
-
Lund, C.1
Yannakakis, M.2
-
22
-
-
0032667193
-
Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems
-
J. S. B. MITCHELL (1999). Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM J. Comput. 28, 1298-1309.
-
(1999)
SIAM J. Comput.
, vol.28
, pp. 1298-1309
-
-
Mitchell, J.S.B.1
-
27
-
-
0001326115
-
The hardness of approximation: Gap location
-
E. PETRANK (1994). The hardness of approximation: gap location. Comput. Complexity 4, 133-157.
-
(1994)
Comput. Complexity
, vol.4
, pp. 133-157
-
-
Petrank, E.1
-
28
-
-
0030714232
-
A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP
-
ACM Press
-
R. RAZ & S. SAFRA (1997). A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In Proc. 29th Annual ACM Symposium on Theory of Computing, ACM Press, 475-484.
-
(1997)
Proc. 29th Annual ACM Symposium on Theory of Computing
, pp. 475-484
-
-
Raz, R.1
Safra, S.2
-
30
-
-
0010023575
-
The errand scheduling problem
-
SUNY at Buffalo
-
P. SLAVIK (1997). The errand scheduling problem. Technical Report 97-02, SUNY at Buffalo.
-
(1997)
Technical Report 97-02
-
-
Slavik, P.1
|