-
1
-
-
0346830823
-
Uber die Differentialgleichung deren Losungskurve durch zwei gegebene Punkte hindurchgehen soll
-
K. Zawischa Uber die Differentialgleichung deren Losungskurve durch zwei gegebene Punkte hindurchgehen soll Monatsh. Math. Phys. 37 1930 103 124
-
(1930)
Monatsh. Math. Phys.
, vol.37
, pp. 103-124
-
-
Zawischa, K.1
-
2
-
-
84984049167
-
A constructive theorem of existence and uniqueness for problem y′ = f(x, y, λ), y(a) = α, y(b) = β
-
T. Pomentale A constructive theorem of existence and uniqueness for problem y′ = f(x, y, λ), y(a) = α, y(b) = β Z. Angew. Math. Mech. 56 1976 387 388
-
(1976)
Z. Angew. Math. Mech.
, vol.56
, pp. 387-388
-
-
Pomentale, T.1
-
3
-
-
19644370535
-
Parametrized singularly perturbed boundary value problems
-
M. Feckan Parametrized singularly perturbed boundary value problems J. Math. Anal. Appl. 188 1994 426 435
-
(1994)
J. Math. Anal. Appl.
, vol.188
, pp. 426-435
-
-
Feckan, M.1
-
4
-
-
19644384289
-
Monotone iterations for differential problems
-
T. Jankowski Monotone iterations for differential problems Math. Notes, Miscolc 2 2001 31 38
-
(2001)
Math. Notes, Miscolc
, vol.2
, pp. 31-38
-
-
Jankowski, T.1
-
5
-
-
0009823117
-
Monotone iterations for differential equations with a parameter
-
T. Jankowski, and V. Lakshmikantham Monotone iterations for differential equations with a parameter J. Appl. Math. Stoch. Anal. 10 1997 273 278
-
(1997)
J. Appl. Math. Stoch. Anal.
, vol.10
, pp. 273-278
-
-
Jankowski, T.1
Lakshmikantham, V.2
-
6
-
-
19644388993
-
On the investigation of some non-linear boundary value problems with parameters
-
M. Ronto, and T. Csikos-Marinets On the investigation of some non-linear boundary value problems with parameters Math. Notes, Miscolc 1 2000 157 166
-
(2000)
Math. Notes, Miscolc
, vol.1
, pp. 157-166
-
-
Ronto, M.1
Csikos-Marinets, T.2
-
7
-
-
19644370747
-
Nonlinear boundary value problem for second order differential equations depending on a parameter
-
S. Stanek Nonlinear boundary value problem for second order differential equations depending on a parameter Math. Slovaca 47 1997 439 449
-
(1997)
Math. Slovaca
, vol.47
, pp. 439-449
-
-
Stanek, S.1
-
8
-
-
19644365738
-
Convergence of the iterative process to the solution of the boundary problem with the parameter
-
A. Gulle, and H. Duru Convergence of the iterative process to the solution of the boundary problem with the parameter Trans. Acad. Sci. Azerb., Ser. Phys. Tech. Math. Sci. 18 1998 34 40
-
(1998)
Trans. Acad. Sci. Azerb., Ser. Phys. Tech. Math. Sci.
, vol.18
, pp. 34-40
-
-
Gulle, A.1
Duru, H.2
-
14
-
-
0010951054
-
Difference method for the solution one problem of the theory dispersive waves
-
G.M. Amiraliyev Difference method for the solution one problem of the theory dispersive waves USSR Diff. Equat. 26 1990 2146 2154
-
(1990)
USSR Diff. Equat.
, vol.26
, pp. 2146-2154
-
-
Amiraliyev, G.M.1
-
15
-
-
0010952169
-
A uniformly convergent finite difference method for a singularly perturbed initial value problem
-
G.M. Amiraliyev, and H. Duru A uniformly convergent finite difference method for a singularly perturbed initial value problem Appl. Math. Mech. (English Edition) 20 1999 379 387
-
(1999)
Appl. Math. Mech. (English Edition)
, vol.20
, pp. 379-387
-
-
Amiraliyev, G.M.1
Duru, H.2
-
16
-
-
0242583632
-
A uniformly convergent difference method for the periodical boundary value problem
-
G.M. Amiraliyev, and H. Duru A uniformly convergent difference method for the periodical boundary value problem Comput. Math. Appl. 46 2003 695 703
-
(2003)
Comput. Math. Appl.
, vol.46
, pp. 695-703
-
-
Amiraliyev, G.M.1
Duru, H.2
-
17
-
-
0007084777
-
Approximate solution of a non-linear boundary value problem with a small parameter for the highest order derivative
-
I.P. Boglaev Approximate solution of a non-linear boundary value problem with a small parameter for the highest order derivative USSR Comput. Math. Math. Phys. 24 1984 30 39
-
(1984)
USSR Comput. Math. Math. Phys.
, vol.24
, pp. 30-39
-
-
Boglaev, I.P.1
-
18
-
-
0242682942
-
On the numerical solution of the system of Boussinusque with boundary layers
-
G.M. Amiraliyev On the numerical solution of the system of Boussinusque with boundary layers USSR Model. Mech. 3 5 1988 3 14
-
(1988)
USSR Model. Mech.
, vol.3
, Issue.5
, pp. 3-14
-
-
Amiraliyev, G.M.1
|