메뉴 건너뛰기




Volumn 18, Issue 1, 2006, Pages 60-79

Spontaneous dynamics of asymmetric random recurrent spiking neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; BIOLOGICAL MODEL; CENTRAL NERVOUS SYSTEM; HUMAN; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY; SYNAPSE; SYNAPTIC TRANSMISSION;

EID: 33644875527     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/089976606774841567     Document Type: Article
Times cited : (41)

References (20)
  • 1
    • 0000438415 scopus 로고    scopus 로고
    • Dynamics of recurrent spiking neurons before and following learning
    • Amit, D., & Brunel, N. (1997a). Dynamics of recurrent spiking neurons before and following learning. Network: Comput. Neural. Syst., 8, 373-404.
    • (1997) Network: Comput. Neural. Syst. , vol.8 , pp. 373-404
    • Amit, D.1    Brunel, N.2
  • 2
    • 0030947941 scopus 로고    scopus 로고
    • Model of global spontaneous activity and local structured delay activity during learning periods in the cerebral cortex
    • Amit, D., & Brunel, N. (1997b). Model of global spontaneous activity and local structured delay activity during learning periods in the cerebral cortex. Cerebral Cortex, 7, 237-252.
    • (1997) Cerebral Cortex , vol.7 , pp. 237-252
    • Amit, D.1    Brunel, N.2
  • 3
    • 0034006515 scopus 로고    scopus 로고
    • Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
    • Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183- 208.
    • (2000) Journal of Computational Neuroscience , vol.8 , pp. 183-208
    • Brunel, N.1
  • 4
    • 0033210816 scopus 로고    scopus 로고
    • Fast global oscillations in networks of integrate-and-fire neurons with low firing rates
    • Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 1621-1671.
    • (1999) Neural Computation , vol.11 , pp. 1621-1671
    • Brunel, N.1    Hakim, V.2
  • 5
    • 0001380222 scopus 로고    scopus 로고
    • Phase-locking in weakly heterogeneous neural networks
    • Chow, C. (1998). Phase-locking in weakly heterogeneous neural networks. Physica D, 118(3-4), 343-370.
    • (1998) Physica D , vol.118 , Issue.3-4 , pp. 343-370
    • Chow, C.1
  • 6
    • 33645709679 scopus 로고    scopus 로고
    • Chaos in integrate-and-fire dynamical systems
    • American Institute of Physics Conference Proceedings
    • Coombes, S. (1999). Chaos in integrate-and-fire dynamical systems. In Proc. of Stochas-tic and Chaotic Dynamics in the. Lakes. American Institute of Physics Conference Proceedings.
    • (1999) Proc. of Stochastic and Chaotic Dynamics in the Lakes
    • Coombes, S.1
  • 7
  • 8
    • 0033110047 scopus 로고    scopus 로고
    • Collective behavior of networks with linear (VLSI) integrate-and-fire neurons
    • Fusi, S., & Mattia, M. (1999). Collective behavior of networks with linear (VLSI) integrate-and-fire neurons. Neural Computation, 11, 633-652.
    • (1999) Neural Computation , vol.11 , pp. 633-652
    • Fusi, S.1    Mattia, M.2
  • 9
    • 0033630628 scopus 로고    scopus 로고
    • Population dynamics of spiking neurons: Fast transients, asynchronous states and locking
    • Gerstner, W. (2000). Population dynamics of spiking neurons: Fast transients, asynchronous states and locking. Neural Computation, 12, 43-89.
    • (2000) Neural Computation , vol.12 , pp. 43-89
    • Gerstner, W.1
  • 10
    • 0001926501 scopus 로고    scopus 로고
    • Populations of spiking neurons
    • W. Maas & C. Bishop (Eds.). Cambridge, MA: MIT Press
    • Gerstner, W. (2001). Populations of spiking neurons. In W. Maas & C. Bishop (Eds.), Pulsed neural networks. Cambridge, MA: MIT Press.
    • (2001) Pulsed Neural Networks
    • Gerstner, W.1
  • 11
    • 36149030974 scopus 로고
    • Associative memory in a network of "spiking" neurons
    • Gerstner, W., & van Hemmen, J. L. (1992). Associative memory in a network of "spiking" neurons. Network, 3, 139-164.
    • (1992) Network , vol.3 , pp. 139-164
    • Gerstner, W.1    Van Hemmen, J.L.2
  • 12
    • 0000399729 scopus 로고
    • Clustering in globally coupled inhibitory neurons
    • Golomb, D. (1994). Clustering in globally coupled inhibitory neurons. Physica D, 72, 259-282.
    • (1994) Physica D , vol.72 , pp. 259-282
    • Golomb, D.1
  • 13
    • 85036133906 scopus 로고    scopus 로고
    • Population dynamics of interacting spiking neurons
    • Mattia, M., & del Guidice, P. (2000). Population dynamics of interacting spiking neurons. Physical Review E, 66(5), 051917.
    • (2000) Physical Review E , vol.66 , Issue.5 , pp. 051917
    • Mattia, M.1    Del Guidice, P.2
  • 14
    • 0036479959 scopus 로고    scopus 로고
    • Temporal correlations in stochastic networks of spiking neurons
    • Meyer, C., & van Vreeswijk, C. (2002). Temporal correlations in stochastic networks of spiking neurons. Neural Computation, 14(2), 369-404.
    • (2002) Neural Computation , vol.14 , Issue.2 , pp. 369-404
    • Meyer, C.1    Van Vreeswijk, C.2
  • 15
    • 0035710885 scopus 로고    scopus 로고
    • Oscillations and irregular emission in networks of linear spiking neurons
    • Mongillo, G., & Amit, D. (2001). Oscillations and irregular emission in networks of linear spiking neurons. Computational Neuroscience, 11, 249-261.
    • (2001) Computational Neuroscience , vol.11 , pp. 249-261
    • Mongillo, G.1    Amit, D.2
  • 16
    • 0036016201 scopus 로고    scopus 로고
    • Large deviations and mean-field theory for asymmetric random recurrent neural networks
    • Moynot, O., & Samuelides, M. (2002). Large deviations and mean-field theory for asymmetric random recurrent neural networks. Probability Theory and Related Fields, 123(1), 41-75.
    • (2002) Probability Theory and Related Fields , vol.123 , Issue.1 , pp. 41-75
    • Moynot, O.1    Samuelides, M.2
  • 17
    • 0034133323 scopus 로고    scopus 로고
    • Noise in integrate-and-fire models: From stochastic input to escape rates
    • Plesser, H. E., & Gerstner, W. (2000). Noise in integrate-and-fire models: From stochastic input to escape rates. Neural Computation, 12, 367-384.
    • (2000) Neural Computation , vol.12 , pp. 367-384
    • Plesser, H.E.1    Gerstner, W.2
  • 19
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724-1726.
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 20
    • 0000090155 scopus 로고
    • Sequential tests of statistical hypotheses
    • Wald, A. (1945). Sequential tests of statistical hypotheses. Ann. Math. Stat., 16, 117-186.
    • (1945) Ann. Math. Stat. , vol.16 , pp. 117-186
    • Wald, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.