-
1
-
-
17744396698
-
Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies
-
Audusse, E., Perthame, B. (2005). Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. Roy. Soc. Edinburgh Sect. A 135(2): 253-265.
-
(2005)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.135
, Issue.2
, pp. 253-265
-
-
Audusse, E.1
Perthame, B.2
-
2
-
-
33644815331
-
Analysis of a scalar conservation law with a flux function with discontinuous coefficients
-
Bachmann, F. (2004). Analysis of a scalar conservation law with a flux function with discontinuous coefficients. Advances in Differential Equations 11-12:1317-1338.
-
(2004)
Advances in Differential Equations
, vol.11-12
, pp. 1317-1338
-
-
Bachmann, F.1
-
4
-
-
18344418212
-
t, and convergence of a difference scheme for continuous sedimentation in ideal clarifierthickener units
-
t, and convergence of a difference scheme for continuous sedimentation in ideal clarifierthickener units. Numer. Math. 97(1):25-65.
-
(2004)
Numer. Math.
, vol.97
, Issue.1
, pp. 25-65
-
-
Bürger, R.1
Karlsen, K.H.2
Risebro, N.H.3
Towers, J.D.4
-
5
-
-
0021835204
-
Measure-valued solutions to conservation laws
-
DiPerna, R. J. (1985). Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88(3):223-270.
-
(1985)
Arch. Rational Mech. Anal.
, vol.88
, Issue.3
, pp. 223-270
-
-
Diperna, R.J.1
-
6
-
-
70350322945
-
Finite volume methods
-
Amsterdam: North-Holland
-
Eymard, R., Gallouët, T., Herbin, R. (2000). Finite Volume Methods. In: Handbook of Numerical Analysis. Vol. VII. Amsterdam: North-Holland pp. 713-1020.
-
(2000)
Handbook of Numerical Analysis.
, vol.7
, pp. 713-1020
-
-
Eymard, R.1
Gallouët, T.2
Herbin, R.3
-
8
-
-
0032882326
-
Solving the Buckley-Leverett equation with gravity in a heterogeneous porous medium
-
Kaasschieter, E. F. (1999). Solving the Buckley-Leverett equation with gravity in a heterogeneous porous medium. Comput. Geosci. 3(1):23-48.
-
(1999)
Comput. Geosci.
, vol.3
, Issue.1
, pp. 23-48
-
-
Kaasschieter, E.F.1
-
9
-
-
0000055941
-
Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior
-
Klingenberg, C., Risebro, N. H. (1995). Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Comm. Partial Differential Equations 20(11-12): 1959-1990.
-
(1995)
Comm. Partial Differential Equations
, vol.20
, Issue.11-12
, pp. 1959-1990
-
-
Klingenberg, C.1
Risebro, N.H.2
-
10
-
-
0040485207
-
Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients
-
Karlsen, K. H., Risebro, N. H. (2001). Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. M2AN Math. Model. Numer. Anal. 35(2):239-269.
-
(2001)
M2AN Math. Model. Numer. Anal.
, vol.35
, Issue.2
, pp. 239-269
-
-
Karlsen, K.H.1
Risebro, N.H.2
-
11
-
-
0036034556
-
Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient
-
Karlsen, K. H., Risebro, N. H., Towers, J. D. (2002a). Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22(4):623-664.
-
(2002)
IMA J. Numer. Anal.
, vol.22
, Issue.4
, pp. 623-664
-
-
Karlsen, K.H.1
Risebro, N.H.2
Towers, J.D.3
-
12
-
-
0442284499
-
On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient
-
electronic
-
Karlsen, K. H., Risebro, N. H., Towers, J. D. (2002b). On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient. Electron. J. Differential Equations 93:23 (electronic).
-
(2002)
Electron. J. Differential Equations
, vol.93
, pp. 23
-
-
Karlsen, K.H.1
Risebro, N.H.2
Towers, J.D.3
-
13
-
-
4444234405
-
1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients
-
1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3:1-49.
-
(2003)
Skr. K. Nor. Vidensk. Selsk.
, vol.3
, pp. 1-49
-
-
Karlsen, K.H.1
Risebro, N.H.2
Towers, J.D.3
-
14
-
-
0000220623
-
First order quasilinear equations with several independent variables
-
Kruzhkov, S. N. (1970). First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123):228-255.
-
(1970)
Mat. Sb. (N.S.)
, vol.81
, Issue.123
, pp. 228-255
-
-
Kruzhkov, S.N.1
-
16
-
-
0043247914
-
The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation
-
Kuznetsov, N. N. (1976). The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz. 16(6): 1489-1502, 1627.
-
(1976)
Ž. Vyčisl. Mat. i Mat. Fiz.
, vol.16
, Issue.6
, pp. 1489-1502
-
-
Kuznetsov, N.N.1
-
17
-
-
84968518243
-
A kinetic formulation of multidimensional scalar conservation laws and related equations
-
Lions, P.-L., Perthame, B., Tadmor, E. (1994). A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7(1):169-191.
-
(1994)
J. Amer. Math. Soc.
, vol.7
, Issue.1
, pp. 169-191
-
-
Lions, P.-L.1
Perthame, B.2
Tadmor, E.3
-
18
-
-
0032325185
-
Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure
-
Perthame, B. (1998). Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure. J. Math. Pures Appl. 9 77 (10):1055-1064.
-
(1998)
J. Math. Pures Appl.
, vol.9-77
, Issue.10
, pp. 1055-1064
-
-
Perthame, B.1
-
19
-
-
0037642096
-
-
Oxford Lecture Series in Mathematics and its Applications. Oxford: Oxford University Press
-
Perthane, B. (2002). Kinetic Formulation of Conservation Laws. Oxford Lecture Series in Mathematics and its Applications, Vol.21. Oxford: Oxford University Press.
-
(2002)
Kinetic Formulation of Conservation Laws
, vol.21
-
-
Perthane, B.1
-
20
-
-
0344118909
-
Weak solutions for equations defined by accretive operators
-
Portilheiro, M. (2003a). Weak solutions for equations defined by accretive operators. I. Proc. Roy. Soc. Edinburgh Sect. A 133(5): 1193-1207.
-
(2003)
I. Proc. Roy. Soc. Edinburgh Sect. A
, vol.133
, Issue.5
, pp. 1193-1207
-
-
Portilheiro, M.1
-
21
-
-
0344584382
-
Weak solutions for equations defined by accretive operators. II. Relaxation limits
-
Portilheiro, M. (2003b) Weak solutions for equations defined by accretive operators. II. Relaxation limits. J. Differential Equations 195(1):66-81.
-
(2003)
J. Differential Equations
, vol.195
, Issue.1
, pp. 66-81
-
-
Portilheiro, M.1
-
22
-
-
0348162458
-
Dissipative and entropy solutions to non-isotropic degenerate parabolic balance laws
-
Perthame, B., Souganidis, P. E. (2003). Dissipative and entropy solutions to non-isotropic degenerate parabolic balance laws. Arch. Ration. Mech. Anal. 170(4):359-370.
-
(2003)
Arch. Ration. Mech. Anal.
, vol.170
, Issue.4
, pp. 359-370
-
-
Perthame, B.1
Souganidis, P.E.2
-
23
-
-
0037295910
-
Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients
-
Seguin, N., Vovelle, J. (2003). Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13(2):221-257.
-
(2003)
Math. Models Methods Appl. Sci.
, vol.13
, Issue.2
, pp. 221-257
-
-
Seguin, N.1
Vovelle, J.2
-
24
-
-
0034449655
-
Convergence of a difference scheme for conservation laws with a discontinuous flux
-
electronic
-
Towers, J. D. (2000). Convergence of a difference scheme for conservation laws with a discontinuous flux. Society for Industrial and Applied Mathematics J. Numer. Anal. 38(2):681-698 (electronic).
-
(2000)
Society for Industrial and Applied Mathematics J. Numer. Anal.
, vol.38
, Issue.2
, pp. 681-698
-
-
Towers, J.D.1
-
25
-
-
0035453016
-
A difference scheme for conservation laws with a discontinuous flux: The nonconvex case
-
electronic
-
Towers, J. D. (2001). A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. Society for Industrial and Applied Mathematics J. Numer. Anal. 39(4):1197-1218 (electronic).
-
(2001)
Society for Industrial and Applied Mathematics J. Numer. Anal.
, vol.39
, Issue.4
, pp. 1197-1218
-
-
Towers, J.D.1
|