메뉴 건너뛰기




Volumn 53, Issue 3-4, 2005, Pages 349-358

Quenching of self-excited vibrations

Author keywords

Autoparametric; Quenching; Relaxation oscillations; Slow manifold

Indexed keywords

DAMPING; OSCILLATIONS; OSCILLATORS (MECHANICAL); VIBRATION CONTROL;

EID: 33644790825     PISSN: 00220833     EISSN: 15732703     Source Type: Journal    
DOI: 10.1007/s10665-005-9008-z     Document Type: Article
Times cited : (18)

References (14)
  • 4
    • 14844336425 scopus 로고    scopus 로고
    • Autoparametric resonance of relaxation oscilations
    • Verhulst F. and Abadi (2005). Autoparametric resonance of relaxation oscilations. ZAMM 85: 122-131
    • (2005) ZAMM , vol.85 , pp. 122-131
    • Verhulst, F.1    Abadi2
  • 6
    • 0034817886 scopus 로고    scopus 로고
    • On self-excited auto-parametric systems
    • Abadi (2001). On self-excited auto-parametric systems. Nonlinear Dynamics 24: 147-166
    • (2001) Nonlinear Dynamics , vol.24 , pp. 147-166
    • Abadi1
  • 8
    • 0002115697 scopus 로고    scopus 로고
    • An introduction to geometric methods and dynamical systems theory for singular perturbation problems
    • J. C. and R. E. O'Malley, Jr. (eds.) Analyzing Multiscale Phenomena Using Singular Perturbation Methods
    • T.J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: J. C. and R. E. O'Malley, Jr. (eds.), Analyzing Multiscale Phenomena Using Singular Perturbation Methods. Proc. Symposia Appl. Math, AMS 56 (1999) pp. 85-131.
    • (1999) Proc. Symposia Appl. Math, AMS , vol.56 , pp. 85-131
    • Kaper, T.J.1
  • 9
    • 21044434581 scopus 로고    scopus 로고
    • Methods and applications of singular perturbations, boundary layers and multiple timescale dyanmics
    • Springer-Verlag, Berlin
    • Verhulst F. (2005). Methods and applications of singular perturbations, boundary layers and multiple timescale dyanmics. Springer-Verlag, Berlin, 340 pp
    • (2005) , pp. 340
    • Verhulst, F.1
  • 10
    • 0001356311 scopus 로고
    • Persistence and smoothness of invariant manifolds for flows
    • Fenichel N. (1971). Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21: 193-225
    • (1971) Indiana Univ. Math. J. , vol.21 , pp. 193-225
    • Fenichel, N.1
  • 11
    • 0016070051 scopus 로고
    • Asymptotic stability with rate conditions
    • Fenichel N. (1974). Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23: 1109-1137
    • (1974) Indiana Univ. Math. J. , vol.23 , pp. 1109-1137
    • Fenichel, N.1
  • 12
    • 0001957566 scopus 로고
    • Asymptotic stability with rate conditions, II
    • Fenichel N. (1977). Asymptotic stability with rate conditions, II. Indiana Univ. Math. J. 26: 81-93
    • (1977) Indiana Univ. Math. J. , vol.26 , pp. 81-93
    • Fenichel, N.1
  • 13
    • 34250627892 scopus 로고
    • Geometric singular perturbations theory for ordinary differential equations
    • Fenichel N. (1979). Geometric singular perturbations theory for ordinary differential equations. J. Diff. Eq. 31: 53-98
    • (1979) J. Diff. Eq. , vol.31 , pp. 53-98
    • Fenichel, N.1
  • 14
    • 0002316532 scopus 로고
    • Geometric singular perturbation theory
    • Johnson R. (eds) Montecatini Terme, Lecture Notes in Mathematics 1609 Springer-Verlag, Berlin
    • Jones C.K.R.T. (1994). Geometric singular perturbation theory. In: Johnson R. (eds) Dynamical Systems. Montecatini Terme, Lecture Notes in Mathematics 1609. Springer-Verlag, Berlin, pp. 44-118
    • (1994) Dynamical Systems , pp. 44-118
    • Jones, C.K.R.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.