-
1
-
-
0003841213
-
-
Cambridge University Press, New York Cambridge
-
Tondl A., Ruijgrok T., Verhulst F. and Nabergoj R. (2000). Autoparametric Resonance in Mechanical Systems. Cambridge University Press, New York Cambridge, 196 pp
-
(2000)
Autoparametric Resonance in Mechanical Systems
, pp. 196
-
-
Tondl, A.1
Ruijgrok, T.2
Verhulst, F.3
Nabergoj, R.4
-
4
-
-
14844336425
-
Autoparametric resonance of relaxation oscilations
-
Verhulst F. and Abadi (2005). Autoparametric resonance of relaxation oscilations. ZAMM 85: 122-131
-
(2005)
ZAMM
, vol.85
, pp. 122-131
-
-
Verhulst, F.1
Abadi2
-
6
-
-
0034817886
-
On self-excited auto-parametric systems
-
Abadi (2001). On self-excited auto-parametric systems. Nonlinear Dynamics 24: 147-166
-
(2001)
Nonlinear Dynamics
, vol.24
, pp. 147-166
-
-
Abadi1
-
8
-
-
0002115697
-
An introduction to geometric methods and dynamical systems theory for singular perturbation problems
-
J. C. and R. E. O'Malley, Jr. (eds.) Analyzing Multiscale Phenomena Using Singular Perturbation Methods
-
T.J. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: J. C. and R. E. O'Malley, Jr. (eds.), Analyzing Multiscale Phenomena Using Singular Perturbation Methods. Proc. Symposia Appl. Math, AMS 56 (1999) pp. 85-131.
-
(1999)
Proc. Symposia Appl. Math, AMS
, vol.56
, pp. 85-131
-
-
Kaper, T.J.1
-
9
-
-
21044434581
-
Methods and applications of singular perturbations, boundary layers and multiple timescale dyanmics
-
Springer-Verlag, Berlin
-
Verhulst F. (2005). Methods and applications of singular perturbations, boundary layers and multiple timescale dyanmics. Springer-Verlag, Berlin, 340 pp
-
(2005)
, pp. 340
-
-
Verhulst, F.1
-
10
-
-
0001356311
-
Persistence and smoothness of invariant manifolds for flows
-
Fenichel N. (1971). Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21: 193-225
-
(1971)
Indiana Univ. Math. J.
, vol.21
, pp. 193-225
-
-
Fenichel, N.1
-
11
-
-
0016070051
-
Asymptotic stability with rate conditions
-
Fenichel N. (1974). Asymptotic stability with rate conditions. Indiana Univ. Math. J. 23: 1109-1137
-
(1974)
Indiana Univ. Math. J.
, vol.23
, pp. 1109-1137
-
-
Fenichel, N.1
-
12
-
-
0001957566
-
Asymptotic stability with rate conditions, II
-
Fenichel N. (1977). Asymptotic stability with rate conditions, II. Indiana Univ. Math. J. 26: 81-93
-
(1977)
Indiana Univ. Math. J.
, vol.26
, pp. 81-93
-
-
Fenichel, N.1
-
13
-
-
34250627892
-
Geometric singular perturbations theory for ordinary differential equations
-
Fenichel N. (1979). Geometric singular perturbations theory for ordinary differential equations. J. Diff. Eq. 31: 53-98
-
(1979)
J. Diff. Eq.
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
14
-
-
0002316532
-
Geometric singular perturbation theory
-
Johnson R. (eds) Montecatini Terme, Lecture Notes in Mathematics 1609 Springer-Verlag, Berlin
-
Jones C.K.R.T. (1994). Geometric singular perturbation theory. In: Johnson R. (eds) Dynamical Systems. Montecatini Terme, Lecture Notes in Mathematics 1609. Springer-Verlag, Berlin, pp. 44-118
-
(1994)
Dynamical Systems
, pp. 44-118
-
-
Jones, C.K.R.T.1
|