-
1
-
-
0141682262
-
Finite difference heterogeneous multi-scale method for homogenization problems
-
A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), pp. 18-39.
-
(2003)
J. Comput. Phys.
, vol.191
, pp. 18-39
-
-
Abdulle, A.1
W, E.2
-
2
-
-
21144473666
-
Homogenization and two-scale convergence
-
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), pp. 1482-1518.
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 1482-1518
-
-
Allaire, G.1
-
3
-
-
0017266319
-
Homogenization and its application. Mathematical and computational problems
-
Academic Press, New York
-
I. Babuska, Homogenization and its application. Mathematical and computational problems, in Numerical Solution of Partial Differential Equations, III, Academic Press, New York, 1976, pp. 89-116.
-
(1976)
Numerical Solution of Partial Differential Equations
, vol.3
, pp. 89-116
-
-
Babuska, I.1
-
4
-
-
33750831114
-
Towards a unified framework for scientific computing
-
Berlin
-
P. Bastian, M. Droske, C. Engwer, R. Klöfkorn, T. Neubauer, M. Ohlberger, and M. Rumpf, Towards a unified framework for scientific computing, in Proceedings of the 15th International Conference on Domain Decomposition Methods, Berlin, 2003.
-
(2003)
Proceedings of the 15th International Conference on Domain Decomposition Methods
-
-
Bastian, P.1
Droske, M.2
Engwer, C.3
Klöfkorn, R.4
Neubauer, T.5
Ohlberger, M.6
Rumpf, M.7
-
5
-
-
11144285789
-
A posteriori control of modeling errors and discretization errors
-
M. Braack and A. Ern, A posteriori control of modeling errors and discretization errors, Multiscale Model. Simul., 1 (2003), pp. 221-238.
-
(2003)
Multiscale Model. Simul.
, vol.1
, pp. 221-238
-
-
Braack, M.1
Ern, A.2
-
8
-
-
0041952913
-
An adaptive finite element method for a linear elliptic equation with variable coefficients
-
W. Dörfler and O. Wilderotter, An adaptive finite element method for a linear elliptic equation with variable coefficients, ZAMM Z. Angew. Math. Mech., 80 (2000), pp. 481-491.
-
(2000)
ZAMM Z. Angew. Math. Mech.
, vol.80
, pp. 481-491
-
-
Dörfler, W.1
Wilderotter, O.2
-
9
-
-
85128805678
-
The heterogeneous multiscale methods
-
W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), pp. 87-132.
-
(2003)
Commun. Math. Sci.
, vol.1
, pp. 87-132
-
-
E, W.1
Engquist, B.2
-
10
-
-
7244239706
-
Multiscale modeling and computation
-
W. E and B. Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc., 50 (2003), pp. 1062-1070.
-
(2003)
Notices Amer. Math. Soc.
, vol.50
, pp. 1062-1070
-
-
E, W.1
Engquist, B.2
-
11
-
-
33644773714
-
-
preprint, Princeton University, Princeton, NJ
-
W. E and B. Engquist, The Heterogeneous Multi-scale Method for Homogenization Problems, preprint, Princeton University, Princeton, NJ, 2003.
-
(2003)
The Heterogeneous Multi-Scale Method for Homogenization Problems
-
-
E, W.1
Engquist, B.2
-
12
-
-
13644268174
-
Analysis of the heterogeneous multiscale method for elliptic homogenization problems
-
W. E, P. Ming, and P. Zhang, Analysis of the heterogeneous multiscale method for elliptic homogenization problems, J. Amer. Math. Sec., 18 (2005), pp. 121-156.
-
(2005)
J. Amer. Math. Sec.
, vol.18
, pp. 121-156
-
-
E, W.1
Ming, P.2
Zhang, P.3
-
13
-
-
0041428215
-
Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum
-
C. W. Gear and I. G. Kevrekidis, Projective methods for stiff differential equations: Problems with gaps in their eigenvalue spectrum, SIAM J. Sci. Comput., 24 (2003), pp. 1091-1106.
-
(2003)
SIAM J. Sci. Comput.
, vol.24
, pp. 1091-1106
-
-
Gear, C.W.1
Kevrekidis, I.G.2
-
14
-
-
17344387998
-
The gap-tooth method in particle simulations
-
C. W. Gear, J. Li, and I. G. Kevrekids, The gap-tooth method in particle simulations, Phys. Lett. A, 316 (2003), pp. 190-195.
-
(2003)
Phys. Lett. A
, vol.316
, pp. 190-195
-
-
Gear, C.W.1
Li, J.2
Kevrekids, I.G.3
-
15
-
-
33644772661
-
-
Report 28, SFB 256, Bonn
-
T. Gessner, B. Haasdonk, R. Kende, M. Lenz, M. Metscher, R. Neubauer, M. Ohlberger, W. Rosenbaum, M. Rumpf, R. Schwörer, M. Spielberg, and U. Weikard, A Procedural Interface for Multiresolutional Visualization of General Numerical Data, Report 28, SFB 256, Bonn, 1999.
-
(1999)
A Procedural Interface for Multiresolutional Visualization of General Numerical Data
-
-
Gessner, T.1
Haasdonk, B.2
Kende, R.3
Lenz, M.4
Metscher, M.5
Neubauer, R.6
Ohlberger, M.7
Rosenbaum, W.8
Rumpf, M.9
Schwörer, R.10
Spielberg, M.11
Weikard, U.12
-
16
-
-
17644363709
-
High-dimensional finite elements for elliptic problems with multiple scales
-
V. H. Hoang and C. Schwab, High-dimensional finite elements for elliptic problems with multiple scales, Multiscale Model. Simul., 3 (2005), pp. 195-220.
-
(2005)
Multiscale Model. Simul.
, vol.3
, pp. 195-220
-
-
Hoang, V.H.1
Schwab, C.2
-
17
-
-
0031161210
-
A multiscale finite element method for elliptic problems in composite materials and porous media
-
T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), pp. 236-252.
-
(1997)
J. Comput. Phys.
, vol.134
, pp. 236-252
-
-
Hou, T.Y.1
Wu, X.-H.2
-
18
-
-
0039982148
-
Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients
-
T. Y. Hou, X.-H. Wu, and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp., 68 (1999), pp. 913-943.
-
(1999)
Math. Comp.
, vol.68
, pp. 913-943
-
-
Hou, T.Y.1
Wu, X.-H.2
Cai, Z.3
-
19
-
-
0029405472
-
Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods
-
T. J. R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127 (1995), pp. 387-401.
-
(1995)
Comput. Methods Appl. Mech. Engrg.
, vol.127
, pp. 387-401
-
-
Hughes, T.J.R.1
-
20
-
-
0032203197
-
The variational multiscale method - A paradigm for computational mechanics
-
T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy, The variational multiscale method - a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 3-24.
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.166
, pp. 3-24
-
-
Hughes, T.J.R.1
Feijóo, G.R.2
Mazzei, L.3
Quincy, J.-B.4
-
21
-
-
33644760559
-
The variational multiscale formulation of LES with application to turbulent channel flows
-
Springer, New York
-
T. J. R. Hughes and A. A. Oberai, The variational multiscale formulation of LES with application to turbulent channel flows, in Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 223-239.
-
(2002)
Geometry, Mechanics, and Dynamics
, pp. 223-239
-
-
Hughes, T.J.R.1
Oberai, A.A.2
-
22
-
-
0042015246
-
Sparse two-scale FEM for homogenization problems
-
A.-M. Matache, Sparse two-scale FEM for homogenization problems, J. Sci. Comput., 17 (2002), pp. 659-669.
-
(2002)
J. Sci. Comput.
, vol.17
, pp. 659-669
-
-
Matache, A.-M.1
-
24
-
-
13644266686
-
-
preprint, Princeton University, Princeton, NJ
-
P. Ming and X. Yue, Numerical Methods for Multiscale Elliptic Problems, preprint, Princeton University, Princeton, NJ, 2003.
-
(2003)
Numerical Methods for Multiscale Elliptic Problems
-
-
Ming, P.1
Yue, X.2
-
25
-
-
33644750518
-
-
preprint, Princeton University, Princeton, NJ
-
P. Ming and P. Zhang, Analysis of the Heterogeneous Multiscale Method for Parabolic Homogenization Problems, preprint, Princeton University, Princeton, NJ, 2003.
-
(2003)
Analysis of the Heterogeneous Multiscale Method for Parabolic Homogenization Problems
-
-
Ming, P.1
Zhang, P.2
-
26
-
-
0034447334
-
Data oscillation and convergence of adaptive FEM
-
P. Morin, R. H. Nochetto, and K. G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), pp. 466-488.
-
(2000)
SIAM J. Numer. Anal.
, vol.38
, pp. 466-488
-
-
Morin, P.1
Nochetto, R.H.2
Siebert, K.G.3
-
27
-
-
0038129722
-
Local problems on stars: A posteriori error estimators, convergence, and performance
-
P. Morin, R. H. Nochetto, and K. G. Seibert, Local problems on stars: A posteriori error estimators, convergence, and performance, Math. Comp., 72 (2003), pp. 1067-1097.
-
(2003)
Math. Comp.
, vol.72
, pp. 1067-1097
-
-
Morin, P.1
Nochetto, R.H.2
Seibert, K.G.3
-
28
-
-
0034950892
-
Homogenization and multigrid
-
N. Neuss, W. Jäger, and G. Wittum, Homogenization and multigrid, Computing, 66 (2001), pp. 1-26.
-
(2001)
Computing
, vol.66
, pp. 1-26
-
-
Neuss, N.1
Jäger, W.2
Wittum, G.3
-
29
-
-
0034817636
-
Goal-oriented error estimation and adaptivity for the finite element method
-
J. T. Oden and S. Prudhomme, Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl., 41 (2001), pp. 735-756.
-
(2001)
Comput. Math. Appl.
, vol.41
, pp. 735-756
-
-
Oden, J.T.1
Prudhomme, S.2
-
30
-
-
0003071531
-
Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms
-
J. T. Oden and K. S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms, J. Comput. Phys., 164 (2000), pp. 22-47.
-
(2000)
J. Comput. Phys.
, vol.164
, pp. 22-47
-
-
Oden, J.T.1
Vemaganti, K.S.2
-
31
-
-
0036104046
-
A posteriori error estimators for elliptic equations with discontinuous coefficients
-
M. Petzoldt, A posteriori error estimators for elliptic equations with discontinuous coefficients, Adv. Comput. Math., 16 (2002), pp. 47-75.
-
(2002)
Adv. Comput. Math.
, vol.16
, pp. 47-75
-
-
Petzoldt, M.1
-
32
-
-
1442264993
-
A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions
-
S. Repin, S. Sauter, and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions, J. Comput. Appl. Math., 164/165 (2004), pp. 601-612.
-
(2004)
J. Comput. Appl. Math.
, vol.164-165
, pp. 601-612
-
-
Repin, S.1
Sauter, S.2
Smolianski, A.3
-
33
-
-
0000015457
-
Effective bifurcation analysis: A time-stepper-based approach
-
O. Runborg, C. Theodoropoulus, and I. G. Kevrekidis, Effective bifurcation analysis: A time-stepper-based approach, Nonlinearity, 15 (2002), pp. 491-511.
-
(2002)
Nonlinearity
, vol.15
, pp. 491-511
-
-
Runborg, O.1
Theodoropoulus, C.2
Kevrekidis, I.G.3
-
34
-
-
13644261985
-
Generalized FEM for homogenization problems
-
Lect. Notes Comput. Sci, Eng. 20, Springer, Berlin
-
C. Schwab and A.-M. Matache, Generalized FEM for homogenization problems, in Multiscale and Multiresolution Methods, Lect. Notes Comput. Sci, Eng. 20, Springer, Berlin, 2002, pp. 197-237.
-
(2002)
Multiscale and Multiresolution Methods
, pp. 197-237
-
-
Schwab, C.1
Matache, A.-M.2
-
35
-
-
0035860221
-
Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids
-
K. S. Vemaganti and J. T. Oden, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 6089-6124.
-
(2001)
Comput. Methods Appl. Mech. Engrg.
, vol.190
, pp. 6089-6124
-
-
Vemaganti, K.S.1
Oden, J.T.2
-
36
-
-
0003207769
-
A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques
-
Teubner, Stuttgart
-
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Advances in Numerical Mathematics, Teubner, Stuttgart, 1996.
-
(1996)
Advances in Numerical Mathematics
-
-
Verfürth, R.1
-
37
-
-
0004080182
-
-
Springer-Verlag, Berlin
-
V. V. Zhikov, S. M. Kozlov, and O. A. Olejnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994.
-
(1994)
Homogenization of Differential Operators and Integral Functionals
-
-
Zhikov, V.V.1
Kozlov, S.M.2
Olejnik, O.A.3
|