-
2
-
-
0033345114
-
-
SSREDI 0167-5729 10.1016/S0167-5729(98)00010-7
-
H.-C. Jeōng and E. D. Williams, Surf. Sci. Rep. SSREDI 0167-5729 10.1016/S0167-5729(98)00010-7 34, 171 (1999).
-
(1999)
Surf. Sci. Rep.
, vol.34
, pp. 171
-
-
Jeong, H.-C.1
Williams, E.D.2
-
3
-
-
0034957407
-
-
PSSFBP 0079-6816 10.1016/S0079-6816(00)00021-6
-
M. Giesen, Prog. Surf. Sci. PSSFBP 0079-6816 10.1016/S0079-6816(00)00021- 6 68, 1 (2001).
-
(2001)
Prog. Surf. Sci.
, vol.68
, pp. 1
-
-
Giesen, M.1
-
4
-
-
0026880766
-
-
SUSCAS 0039-6028 10.1016/0039-6028(92)90290-M
-
N. C. Bartelt, J. L. Goldberg, T. L. Einstein and E. D. Williams, Surf. Sci. SUSCAS 0039-6028 10.1016/0039-6028(92)90290-M 273, 252 (1992).
-
(1992)
Surf. Sci.
, vol.273
, pp. 252
-
-
Bartelt, N.C.1
Goldberg, J.L.2
Einstein, T.L.3
Williams, E.D.4
-
5
-
-
0027657014
-
-
SUSCAS. 0039-6028
-
A. Pimpinelli, J. Villain, D. E. Wolf, J. J. Métois, J. C. Heyraud, I. Elkinani, and G. Uimin, Surf. Sci. SUSCAS 0039-6028 295, 143 (1993).
-
(1993)
Surf. Sci.
, vol.295
, pp. 143
-
-
Pimpinelli, A.1
Villain, J.2
Wolf, D.E.3
Métois, J.J.4
Heyraud, J.C.5
Elkinani, I.6
Uimin, G.7
-
7
-
-
0003875697
-
-
edited by P. M. Duxbury and T. J. Pence (Plenum Press, New York
-
B. Blagojevic and P. M. Duxbury, in Dynamics of Crystal Surfaces and Interfaces, edited by, P. M. Duxbury, and, T. J. Pence, (Plenum Press, New York, 1997), p. 1.
-
(1997)
Dynamics of Crystal Surfaces and Interfaces
, pp. 1
-
-
Blagojevic, B.1
Duxbury, P.M.2
-
8
-
-
0001232154
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.57.4782
-
S. V. Khare and T. L. Einstein, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.57.4782 57, 4782 (1998).
-
(1998)
Phys. Rev. B
, vol.57
, pp. 4782
-
-
Khare, S.V.1
Einstein, T.L.2
-
9
-
-
0001253296
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.60.1279
-
B. Blagojević and P. M. Duxbury, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.60.1279 60, 1279 (1999).
-
(1999)
Phys. Rev. e
, vol.60
, pp. 1279
-
-
Blagojević, B.1
Duxbury, P.M.2
-
11
-
-
0000621372
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.52.17468
-
W. Selke and P. M. Duxbury, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.52.17468 52, 17468 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 17468
-
-
Selke, W.1
Duxbury, P.M.2
-
12
-
-
0035873660
-
-
PHYADX 0378-4371 10.1016/S0378-4371(01)00035-8
-
F. Szalma, W. Selke, and S. Fischer, Physica A PHYADX 0378-4371 10.1016/S0378-4371(01)00035-8 294, 313 (2001).
-
(2001)
Physica A
, vol.294
, pp. 313
-
-
Szalma, F.1
Selke, W.2
Fischer, S.3
-
14
-
-
0012654542
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.39.736
-
D. B. Abraham and P. J. Upton, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.39.736 39, 736 (1989).
-
(1989)
Phys. Rev. B
, vol.39
, pp. 736
-
-
Abraham, D.B.1
Upton, P.J.2
-
15
-
-
34250082945
-
-
JSTPBS 0022-4715 10.1007/BF01049962
-
H. Spohn, J. Stat. Phys. JSTPBS 0022-4715 10.1007/BF01049962 71, 1081 (1993).
-
(1993)
J. Stat. Phys.
, vol.71
, pp. 1081
-
-
Spohn, H.1
-
16
-
-
36849110552
-
-
JCPSA6 0021-9606 10.1063/1.1726787
-
G. Ehrlich and F. G. Hudda, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.1726787 44, 1039 (1966).
-
(1966)
J. Chem. Phys.
, vol.44
, pp. 1039
-
-
Ehrlich, G.1
Hudda, F.G.2
-
17
-
-
36749047341
-
-
JAPIAU 0021-8979 10.1063/1.1707904
-
R. L. Schwoebel and E. J. Shipsey, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1707904 37, 3682 (1966).
-
(1966)
J. Appl. Phys.
, vol.37
, pp. 3682
-
-
Schwoebel, R.L.1
Shipsey, E.J.2
-
18
-
-
0014464613
-
-
JAPIAU 0021-8979 10.1063/1.1657442
-
R. L. Schwoebel, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.1657442 40, 614 (1969).
-
(1969)
J. Appl. Phys.
, vol.40
, pp. 614
-
-
Schwoebel, R.L.1
-
20
-
-
33644770792
-
-
note
-
The jump rates are given by an Arrhenius equation: e.g., w ∥ = ν ∥ e-Δ E ∥ / kB T, where ν ∥ is the attempt frequency and Δ E ∥ is the energy barrier for the jump. Analogous expressions hold for w ∥′, w ⊥, and w ⊥ ′.
-
-
-
-
21
-
-
33644771740
-
-
note
-
Note that Δ ⊥ p | k p | k+1 + p | k-1 -2 p|k and similarly for Δ ∥, the latter having a period- N boundary condition.
-
-
-
-
22
-
-
33644758803
-
-
note
-
It is important to note that w ⊥ ′ +Υ[α(q)] can never be negative and is equal to zero only at q=0 when w ⊥ ′ =0 where the barrier becomes reflecting.
-
-
-
|