메뉴 건너뛰기




Volumn 33, Issue 11, 2006, Pages 3136-3149

Effects of the neural network s-Sigmoid function on KDD in the presence of imprecise data

Author keywords

Data mining; Imputation; KDD; Neural networks

Indexed keywords

ALGORITHMS; DATA ACQUISITION; DATA MINING; KNOWLEDGE ACQUISITION; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 33644691638     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2005.01.024     Document Type: Article
Times cited : (22)

References (45)
  • 1
    • 0003841602 scopus 로고
    • Why the logistic function? A tutorial discussion on probabilities and neural networks
    • Cambridge, MA: Massachusetts Institute of Technology
    • Jordan MI. Why the logistic function? A tutorial discussion on probabilities and neural networks. Computational Cognitive Science Technical Report 9503. Cambridge, MA: Massachusetts Institute of Technology; 1995.
    • (1995) Computational Cognitive Science Technical Report , vol.9503
    • Jordan, M.I.1
  • 5
    • 0000828942 scopus 로고
    • Missing observations in multivariate statistics I: Review of the literature
    • A. Afifi, and R. Elashoff Missing observations in multivariate statistics I review of the literature Journal of the American Statistical Association 61 1966 595 604
    • (1966) Journal of the American Statistical Association , vol.61 , pp. 595-604
    • Afifi, A.1    Elashoff, R.2
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm (with discussion)
    • A. Dempster, N. Laird, and D. Rubin Maximum likelihood from incomplete data via the EM algorithm (with discussion) Journal of the Royal Statistical Society B39 1977 1 38
    • (1977) Journal of the Royal Statistical Society , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 11
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis (with discussion)
    • P. Diggle, and M. Kenward Informative dropout in longitudinal data analysis (with discussion) Applied Statistics 43 1994 49 94
    • (1994) Applied Statistics , vol.43 , pp. 49-94
    • Diggle, P.1    Kenward, M.2
  • 13
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • R. Little Modeling the drop-out mechanism in repeated-measures studies Journal of the American Statistical Association 90 1995 1112 1121
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.1
  • 14
    • 84965572693 scopus 로고
    • The analysis of social science data with missing values
    • R. Little, and D. Rubin The analysis of social science data with missing values Sociological Methods and Research 18 1989 292 326
    • (1989) Sociological Methods and Research , vol.18 , pp. 292-326
    • Little, R.1    Rubin, D.2
  • 15
    • 10944221086 scopus 로고    scopus 로고
    • Howell DC. Treatment of missing data. D. C. Howell personal website, 1998. Available http://www.uvm.edu/ ∼ dhowell/StatPages/More_Stuff/Missing_Data/Missing.html/
    • (1998) Treatment of Missing Data
    • Howell, D.C.1
  • 19
    • 33644684594 scopus 로고    scopus 로고
    • Kim Y. The curse of the missing data. Y. Kim personal website, 2001. Available http://209.68.240.11:8080/2ndMoment/978476655/addPostingForm/
    • (2001) The Curse of the Missing Data
    • Kim, Y.1
  • 21
    • 0028671841 scopus 로고
    • Analyses with missing data in drug abuse prevention research
    • Collins LM, Seitz LA, editors National Institute on Drug Abuse Research Monograph Series, Washington, DC: NIDA
    • Graham JW, Hofer SM, Piccinin AM. Analyses with missing data in drug abuse prevention research. In: Collins LM, Seitz LA, editors. Drug abuse prevention intervention research: methodological issues. National Institute on Drug Abuse Research Monograph Series, Washington, DC: NIDA; 1994. p. 13-63.
    • (1994) Drug Abuse Prevention Intervention Research: Methodological Issues , pp. 13-63
    • Graham, J.W.1    Hofer, S.M.2    Piccinin, A.M.3
  • 25
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • J. Schafer, and M. Olsen Multiple imputation for multivariate missing-data problems a data analyst's perspective Multivariate Behavioral Research 33 1998 545 571
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.1    Olsen, M.2
  • 26
    • 0032954507 scopus 로고    scopus 로고
    • Applications of multiple imputation in medical studies: From AIDS to NHANES
    • J. Barnard, and X. Meng Applications of multiple imputation in medical studies from AIDS to NHANES Statistical Methods in Medical Research 8 1999 17 36
    • (1999) Statistical Methods in Medical Research , vol.8 , pp. 17-36
    • Barnard, J.1    Meng, X.2
  • 27
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • S. van Buren, H. Boshuizen, and D. Knook Multiple imputation of missing blood pressure covariates in survival analysis Statistics in Medicine 18 1999 681 694
    • (1999) Statistics in Medicine , vol.18 , pp. 681-694
    • Van Buren, S.1    Boshuizen, H.2    Knook, D.3
  • 28
    • 0001913059 scopus 로고
    • Multiple imputation of industry and occupation codes in census public-use samples using Bayesian logistic regression
    • C. Clogg, D. Rubin, N. Schenker, B. Schultz, and L. Weidman Multiple imputation of industry and occupation codes in census public-use samples using Bayesian logistic regression Journal of the American Statistical Association 86 413 1991 68 78
    • (1991) Journal of the American Statistical Association , vol.86 , Issue.413 , pp. 68-78
    • Clogg, C.1    Rubin, D.2    Schenker, N.3    Schultz, B.4    Weidman, L.5
  • 29
    • 0344645049 scopus 로고
    • Variance of the estimated mean for several imputation procedures
    • American Statistical Association 1980
    • Ernst L. Variance of the estimated mean for several imputation procedures. American Statistical Association 1980, Proceedings of the Survey Research Methods Section, 1980. p. 716-20.
    • (1980) Proceedings of the Survey Research Methods Section , pp. 716-720
    • Ernst, L.1
  • 30
    • 0344645047 scopus 로고
    • Two efficient random imputation procedures
    • American Statistical Association 1981
    • Kalton G, Kish L. Two efficient random imputation procedures. American Statistical Association 1981, Proceedings of the survey research methods section, 1981. p. 146-51.
    • (1981) Proceedings of the Survey Research Methods Section , pp. 146-151
    • Kalton, G.1    Kish, L.2
  • 31
    • 0344645048 scopus 로고
    • An overview of hot deck procedures
    • Madow WG, Olkin I, Rubin D, editors New York: Academic Press
    • Ford B. An overview of hot deck procedures. In: Madow WG, Olkin I, Rubin D, editors. Sample surveys, vol. II: Theory and annotated bibliography. New York: Academic Press; 1981. p. 3-10.
    • (1981) Sample Surveys, Vol. II: Theory and Annotated Bibliography , vol.2 , pp. 3-10
    • Ford, B.1
  • 34
    • 0003100723 scopus 로고
    • Incomplete data in sample surveys
    • Madow WG, Olkin I, Rubin D, editors New York: Academic Press
    • Dempster A, Rubin D. Incomplete data in sample surveys. In: Madow WG, Olkin I, Rubin D, editors. Sample surveys, vol. II: Theory and annotated bibliography. New York: Academic Press; 1983. p. 3-10.
    • (1983) Sample Surveys, Vol. II: Theory and Annotated Bibliography , vol.2 , pp. 3-10
    • Dempster, A.1    Rubin, D.2
  • 35
    • 0007156762 scopus 로고
    • Imputation of business survey data
    • B.G. Cox Wiley New York*et al.
    • J.G. Kovar, and P. Whitridge Imputation of business survey data B.G. Cox Business survey methods 1995 Wiley New York 403 423
    • (1995) Business Survey Methods , pp. 403-423
    • Kovar, J.G.1    Whitridge, P.2
  • 40
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • B. Warner, and M. Misra Understanding neural networks as statistical tools The American Statistician 50 1996 284 293
    • (1996) The American Statistician , vol.50 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 41
    • 0001551844 scopus 로고    scopus 로고
    • Mixture models for learning form incomplete data
    • J. Cowan G. Tesauro J. Alspector Morgan Kaufman San Mateo, CA
    • Z. Ghahramani, and M. Jordan Mixture models for learning form incomplete data J. Cowan G. Tesauro J. Alspector Advances in neural information processing systems 6 1997 Morgan Kaufman San Mateo, CA 120 127
    • (1997) Advances in Neural Information Processing Systems 6 , pp. 120-127
    • Ghahramani, Z.1    Jordan, M.2
  • 42
    • 85153928966 scopus 로고
    • Efficient methods for dealing with missing data in supervised learning
    • G. Tesauro D. Touretzky T. Keen The MIT Press Cambridge, MA
    • V. Tresp, R. Neuneier, and S. Ahmad Efficient methods for dealing with missing data in supervised learning G. Tesauro D. Touretzky T. Keen Advances in neural information processing systems 7 1995 The MIT Press Cambridge, MA 689 696
    • (1995) Advances in Neural Information Processing Systems 7 , pp. 689-696
    • Tresp, V.1    Neuneier, R.2    Ahmad, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.