-
1
-
-
33646925958
-
On a characteristic class entering in a quantum condition
-
V. I. Arnold, On a characteristic class entering in a quantum condition, Funct. Anal. Appl. 1 (1967), 1-14.
-
(1967)
Funct. Anal. Appl.
, vol.1
, pp. 1-14
-
-
Arnold, V.I.1
-
3
-
-
0038508936
-
Rotation number for non-autonomous linear Hamiltonian systems I: Basic properties
-
R. Fabbri, R. Johnson, and C. Núñez, Rotation number for non-autonomous linear Hamiltonian systems I: Basic properties, Z. Angew. Math. Phys. 54 (2003), 484-502.
-
(2003)
Z. Angew. Math. Phys.
, vol.54
, pp. 484-502
-
-
Fabbri, R.1
Johnson, R.2
Núñez, C.3
-
4
-
-
0042243600
-
Rotation number for non-autonomous linear Hamiltonian systems II: The Floquet coefficient
-
R. Fabbri, R. Johnson, and C. Núñez, Rotation number for non-autonomous linear Hamiltonian systems II: The Floquet coefficient, Z. Angew. Math. Phys. 54 (2003), 652-676.
-
(2003)
Z. Angew. Math. Phys.
, vol.54
, pp. 652-676
-
-
Fabbri, R.1
Johnson, R.2
Núñez, C.3
-
6
-
-
0000423029
-
The rotation number for almost periodic potentials
-
Erratum, Commun. Math. Phys. 90 (1983), 317-318
-
R. Johnson and J. Moser, The rotation number for almost periodic potentials, Commun. Math. Phys. 84 (1982), 403-438. Erratum, Commun. Math. Phys. 90 (1983), 317-318.
-
(1982)
Commun. Math. Phys.
, vol.84
, pp. 403-438
-
-
Johnson, R.1
Moser, J.2
-
8
-
-
0035425996
-
Linear Hamiltonian systems with absolutely continuous dynamics
-
S. Novo and C. Núñez, Linear Hamiltonian systems with absolutely continuous dynamics, Nonlinear Anal. 47 (2001), 1401-1406.
-
(2001)
Nonlinear Anal.
, vol.47
, pp. 1401-1406
-
-
Novo, S.1
Núñez, C.2
-
9
-
-
0004500735
-
Ergodic properties and rotation number for linear Hamiltonian systems
-
S. Novo, C. Núñez, and R. Obaya, Ergodic properties and rotation number for linear Hamiltonian systems, J. Differential Equations 148 (1998), 148-185.
-
(1998)
J. Differential Equations
, vol.148
, pp. 148-185
-
-
Novo, S.1
Núñez, C.2
Obaya, R.3
-
10
-
-
0013080113
-
Almost automorphic and almost periodic dynamics in skew-product semiflows
-
W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc. 136 (1998), no. 647, 93 pp.
-
(1998)
Mem. Amer. Math. Soc.
, vol.136
, Issue.647
-
-
Shen, W.1
Yi, Y.2
-
11
-
-
34250392866
-
Best constant in Sobolev inequality
-
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372.
-
(1976)
Ann. Mat. Pura Appl.
, vol.4
, Issue.110
, pp. 353-372
-
-
Talenti, G.1
-
12
-
-
0038061159
-
Arguments on the group of symmetric matrices
-
V. A. Yakubovich, Arguments on the group of symmetric matrices, Mat. Sbornik 55 (1961), 255-280.
-
(1961)
Mat. Sbornik
, vol.55
, pp. 255-280
-
-
Yakubovich, V.A.1
-
13
-
-
0011566211
-
Nonresonance conditions for asymptotically positively homogeneous differential systems: The Fučik spectrum and its generalization
-
M. Zhang, Nonresonance conditions for asymptotically positively homogeneous differential systems: the Fučik spectrum and its generalization, J. Differential Equations 145 (1998), 332-366.
-
(1998)
J. Differential Equations
, vol.145
, pp. 332-366
-
-
Zhang, M.1
-
14
-
-
0001289835
-
The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials
-
M. Zhang, The rotation number approach to eigenvalues of the one-dimensional p-Laplacian with periodic potentials, J. London Math. Soc. (2) 64 (2001), 125-143.
-
(2001)
J. London Math. Soc.
, vol.64
, Issue.2
, pp. 125-143
-
-
Zhang, M.1
-
15
-
-
0037058006
-
The rotation number approach to the periodic Fučik spectrum
-
M. Zhang, The rotation number approach to the periodic Fučik spectrum, J. Differential Equations 185 (2002), 74-96.
-
(2002)
J. Differential Equations
, vol.185
, pp. 74-96
-
-
Zhang, M.1
-
16
-
-
29044450155
-
Certain classes of potentials for p-Laplacian to be non-degenerate
-
to appear
-
M. Zhang, Certain classes of potentials for p-Laplacian to be non-degenerate, Math. Nachr., to appear.
-
Math. Nachr.
-
-
Zhang, M.1
|