메뉴 건너뛰기




Volumn 50, Issue 9, 2006, Pages 2247-2267

Bayesian analysis of the stochastic conditional duration model

Author keywords

Kalman filter and simulation smoother; Latent variable model; Markov chain Monte Carlo; Non Gaussian state space model; Transaction data

Indexed keywords

COMPUTER SIMULATION; KALMAN FILTERING; MARKOV PROCESSES; MATHEMATICAL MODELS; MONTE CARLO METHODS; REGRESSION ANALYSIS; VECTORS;

EID: 33644658912     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2005.07.005     Document Type: Article
Times cited : (38)

References (34)
  • 1
    • 0001758906 scopus 로고
    • Heteroscedasticity and autocorrelation consistent covariance matrix estimation
    • D.W.K. Andrews Heteroscedasticity and autocorrelation consistent covariance matrix estimation Econometrica 59 1991 817 858
    • (1991) Econometrica , vol.59 , pp. 817-858
    • Andrews, D.W.K.1
  • 2
    • 1642443326 scopus 로고    scopus 로고
    • The stochastic conditional duration model: A latent variable model for the analysis of financial durations
    • L. Bauwens, and D. Veredas The stochastic conditional duration model: a latent variable model for the analysis of financial durations J. Econometrics 199 2004 381 412
    • (2004) J. Econometrics , vol.199 , pp. 381-412
    • Bauwens, L.1    Veredas, D.2
  • 3
    • 13844309266 scopus 로고    scopus 로고
    • A comparison of financial duration models via density forecasts
    • L. Bauwens, P. Giot, J. Grammig, and D. Veredas A comparison of financial duration models via density forecasts Internat. J. Forecast. 20 2004 589 609
    • (2004) Internat. J. Forecast. , vol.20 , pp. 589-609
    • Bauwens, L.1    Giot, P.2    Grammig, J.3    Veredas, D.4
  • 4
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • C.K. Carter, and R. Kohn On Gibbs sampling for state space models Biometrica 81 1994 541 553
    • (1994) Biometrica , vol.81 , pp. 541-553
    • Carter, C.K.1    Kohn, R.2
  • 5
    • 0030492729 scopus 로고    scopus 로고
    • Markov chain Monte Carlo simulation methods in econometrics
    • S. Chib, and E. Greenberg Markov chain Monte Carlo simulation methods in econometrics Econometric Theory 12 1996 407 431
    • (1996) Econometric Theory , vol.12 , pp. 407-431
    • Chib, S.1    Greenberg, E.2
  • 6
    • 43949160158 scopus 로고
    • Stochastic volatility in asset prices estimation with simulated maximum likelihood
    • J. Daniellson Stochastic volatility in asset prices estimation with simulated maximum likelihood J. Econometrics 64 1994 375 400
    • (1994) J. Econometrics , vol.64 , pp. 375-400
    • Daniellson, J.1
  • 7
    • 0001325243 scopus 로고
    • The simulation smoother for time series models
    • P. De Jong, and N. Shephard The simulation smoother for time series models Biometrica 82 1995 339 350
    • (1995) Biometrica , vol.82 , pp. 339-350
    • De Jong, P.1    Shephard, N.2
  • 8
    • 0034354798 scopus 로고    scopus 로고
    • Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives
    • J. Durbin, and S.J. Koopman Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives J. Roy. Statist. Soc. Ser. B 62 2000 3 56
    • (2000) J. Roy. Statist. Soc. Ser. B , vol.62 , pp. 3-56
    • Durbin, J.1    Koopman, S.J.2
  • 10
    • 33644645528 scopus 로고    scopus 로고
    • A simple and efficient simulation smoother for time series models
    • J. Durbin, and S.J. Koopman A simple and efficient simulation smoother for time series models Biometrika 81 2002 341 353
    • (2002) Biometrika , vol.81 , pp. 341-353
    • Durbin, J.1    Koopman, S.J.2
  • 11
    • 0010940821 scopus 로고
    • Price, trade size, and information in securities markets
    • D. Easley, and M. O'Hara Price, trade size, and information in securities markets J. Financial Econom. 19 1987 69 90
    • (1987) J. Financial Econom. , vol.19 , pp. 69-90
    • Easley, D.1    O'Hara, M.2
  • 12
    • 84977716725 scopus 로고
    • Time and the process of security price adjustment
    • D. Easley, and M. O'Hara Time and the process of security price adjustment J. Finance 47 1992 577 605
    • (1992) J. Finance , vol.47 , pp. 577-605
    • Easley, D.1    O'Hara, M.2
  • 13
    • 0000440935 scopus 로고    scopus 로고
    • Likelihood inference for discretely observed nonlinear diffusions
    • O. Elerian, S. Chib, and N. Shephard Likelihood inference for discretely observed nonlinear diffusions Econometrica 69 2001 959 993
    • (2001) Econometrica , vol.69 , pp. 959-993
    • Elerian, O.1    Chib, S.2    Shephard, N.3
  • 14
    • 0000373457 scopus 로고    scopus 로고
    • Autoregressive conditional duration: A new approach for irregularly spaced transaction data
    • R.F. Engle, and J.R. Russell Autoregressive conditional duration: a new approach for irregularly spaced transaction data Econometrica 66 1998 987 1007
    • (1998) Econometrica , vol.66 , pp. 987-1007
    • Engle, R.F.1    Russell, J.R.2
  • 15
    • 33644655944 scopus 로고    scopus 로고
    • Stochastic conditional duration models with "leverage Effect" for financial transaction data
    • D. Feng, J.J. Jiang, and P. Song Stochastic conditional duration models with "Leverage Effect" for financial transaction data J. Financial Econometrics 2 2004 390 421
    • (2004) J. Financial Econometrics , vol.2 , pp. 390-421
    • Feng, D.1    Jiang, J.J.2    Song, P.3
  • 16
    • 33644650446 scopus 로고    scopus 로고
    • A maximum likelihood approach for non-Gaussian stochastic volatility models
    • M. Fridman, and L. Harris A maximum likelihood approach for non-Gaussian stochastic volatility models J. Business Econom. Statist. 114 1998 429 434
    • (1998) J. Business Econom. Statist. , vol.114 , pp. 429-434
    • Fridman, M.1    Harris, L.2
  • 17
    • 84981426681 scopus 로고
    • Data augmentation and dynamic linear models
    • S. Frühwirth-Schnatter Data augmentation and dynamic linear models J. Time Ser. Anal. 15 1994 183 202
    • (1994) J. Time Ser. Anal. , vol.15 , pp. 183-202
    • Frühwirth-Schnatter, S.1
  • 20
    • 3042777110 scopus 로고    scopus 로고
    • Bayesian analysis of stochastic volatility models with fat-tails and correlated errors
    • E. Jacquier, N.G. Polson, and P.E. Rossi Bayesian analysis of stochastic volatility models with fat-tails and correlated errors J. Econometrics 122 2004 185 212
    • (2004) J. Econometrics , vol.122 , pp. 185-212
    • Jacquier, E.1    Polson, N.G.2    Rossi, P.E.3
  • 22
    • 0000980397 scopus 로고
    • Bayes factors in practice
    • R.E. Kass Bayes factors in practice Statistician 2 1993 551 560
    • (1993) Statistician , vol.2 , pp. 551-560
    • Kass, R.E.1
  • 23
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with ARCH models
    • S. Kim, N. Shephard, and S. Chib Stochastic volatility: likelihood inference and comparison with ARCH models Rev. Econom. Stud. 65 1998 361 393
    • (1998) Rev. Econom. Stud. , vol.65 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 24
    • 0038521361 scopus 로고    scopus 로고
    • Univariate and multivariate stochastic volatility models: Estimation and diagnostics
    • R. Liesenfeld, and J.-F. Richard Univariate and multivariate stochastic volatility models: estimation and diagnostics J. Empirical Finance 10 2003 505 531
    • (2003) J. Empirical Finance , vol.10 , pp. 505-531
    • Liesenfeld, R.1    Richard, J.-F.2
  • 27
    • 0000518006 scopus 로고    scopus 로고
    • BUGS for a Bayesian analysis of stochastic volatility models
    • R. Meyer, and J. Yu BUGS for a Bayesian analysis of stochastic volatility models Econometrics J. 3 2000 198 215
    • (2000) Econometrics J. , vol.3 , pp. 198-215
    • Meyer, R.1    Yu, J.2
  • 28
    • 0347609323 scopus 로고    scopus 로고
    • Discussion of Durbin and Koopman (2000)
    • M. Pitt Discussion of Durbin and Koopman (2000) J. Roy. Statist. Soc. Ser. B 62 2000 30 32
    • (2000) J. Roy. Statist. Soc. Ser. B , vol.62 , pp. 30-32
    • Pitt, M.1
  • 29
    • 0142020116 scopus 로고    scopus 로고
    • Dynamics of trade-by-trade price movements: Decomposition and models
    • T.H. Rydberg, and N. Shephard Dynamics of trade-by-trade price movements: decomposition and models J. Financial Econometrics 1 2003 2 25
    • (2003) J. Financial Econometrics , vol.1 , pp. 2-25
    • Rydberg, T.H.1    Shephard, N.2
  • 30
    • 0000254890 scopus 로고    scopus 로고
    • Estimation of stochastic volatility models via Monte Carlo maximum likelihood
    • G. Sandmann, and S.J. Koopman Estimation of stochastic volatility models via Monte Carlo maximum likelihood J. Econometrics 87 1998 271 301
    • (1998) J. Econometrics , vol.87 , pp. 271-301
    • Sandmann, G.1    Koopman, S.J.2
  • 31
    • 0038853197 scopus 로고
    • Partial non-Gaussian state space
    • N. Shephard Partial non-Gaussian state space Biometrica 81 1994 115 131
    • (1994) Biometrica , vol.81 , pp. 115-131
    • Shephard, N.1
  • 32
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • N. Shephard, and M. Pitt Likelihood analysis of non-Gaussian measurement time series Biometrica 84 1997 653 667
    • (1997) Biometrica , vol.84 , pp. 653-667
    • Shephard, N.1    Pitt, M.2
  • 33
    • 21844487977 scopus 로고
    • Computing Bayes factors using a generalization of the Savage-Dickey density ratio
    • I. Verdinelli, and L. Wasserman Computing Bayes factors using a generalization of the Savage-Dickey density ratio J. Amer. Statist. Assoc. 90 1995 614 618
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 614-618
    • Verdinelli, I.1    Wasserman, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.