메뉴 건너뛰기




Volumn 15, Issue 1-2, 2005, Pages 137-149

Hybrid neural systems for pattern recognition in artificial noses

Author keywords

Artificial nose; Evolving fuzzy neural networks; Hybrid neural systems; Multi layer perceptron; Time delay neural networks; Wavelet filter

Indexed keywords

ANIMAL; ARTICLE; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL ORGAN; AUTOMATED PATTERN RECOGNITION; FUZZY LOGIC; HUMAN; METHODOLOGY; NOSE; ODOR; PHYSIOLOGY; PRINCIPAL COMPONENT ANALYSIS;

EID: 33644631114     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065705000141     Document Type: Article
Times cited : (13)

References (33)
  • 1
    • 0010742264 scopus 로고    scopus 로고
    • Hybrid intelligent systems design: A review of a decade of research
    • Monash University
    • A. Abraham and B. Nath, Hybrid intelligent systems design: A review of a decade of research, Technical Report (Monash University, 2002).
    • (2002) Technical Report
    • Abraham, A.1    Nath, B.2
  • 2
    • 0002345473 scopus 로고    scopus 로고
    • Hybrid neural systems: From simple coupling to fully integrated neural networks
    • K. Mcgarry, S. Wermter and J. Maclntyre, Hybrid neural systems: From simple coupling to fully integrated neural networks, Neural Computing Surveys (2002), p. 654.
    • (2002) Neural Computing Surveys , pp. 654
    • Mcgarry, K.1    Wermter, S.2    Maclntyre, J.3
  • 5
    • 0022471098 scopus 로고
    • Learning representations by backpropagation errors
    • D. E. Rumelhart, G. E. Hilton and R., J. Williams, Learning representations by backpropagation errors, Nature 323 (1986) 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hilton, G.E.2    Williams, R.J.3
  • 6
    • 0003966401 scopus 로고
    • The development of the time-delay neural network architeture for speech recognition
    • Carnegie-Mellon University
    • K. J. Lang and G. E. Hilton, The development of the time-delay neural network architeture for speech recognition, Technical Report CMU-CS-88-152 (Carnegie-Mellon University, 1988).
    • (1988) Technical Report , vol.CMU-CS-88-152
    • Lang, K.J.1    Hilton, G.E.2
  • 7
    • 0037119179 scopus 로고    scopus 로고
    • A fuzzy neural network for pattern classification and feature selection
    • R. P. Li, M. Mukaidono and I. B. Turksen, A fuzzy neural network for pattern classification and feature selection, Fuzzy Sets and Systems 130 (2002) 101-108.
    • (2002) Fuzzy Sets and Systems , vol.130 , pp. 101-108
    • Li, R.P.1    Mukaidono, M.2    Turksen, I.B.3
  • 8
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised on-line, knowl-edge-based learning
    • N. Kasabov, Evolving Fuzzy Neural Networks for Supervised/Unsupervised On-Line, Knowl-edge-Based Learning, IEEE Trans. on Systems, Man and Cybernetics, Part B: Cybernetics 31(6) (2001) 902-918.
    • (2001) IEEE Trans. on Systems, Man and Cybernetics, Part B: Cybernetics , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 10
    • 0035935880 scopus 로고    scopus 로고
    • Classification of vintages of wine by an artificial nose using time delay neural networks
    • A. Yamazaki, T. B. Ludermir and M. C. P. D. Souto, Classification of vintages of wine by an artificial nose using time delay neural networks, IEE Electronics Letters 37(24) (2001) 1466-1467.
    • (2001) IEE Electronics Letters , vol.37 , Issue.24 , pp. 1466-1467
    • Yamazaki, A.1    Ludermir, T.B.2    Souto, M.C.P.D.3
  • 12
    • 0028384140 scopus 로고
    • A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers
    • J. W. Gardner, T. C. Pearce, S. Friel, P. N. Bartlett and N. Blair, A multisensor system for beer flavour monitoring using an array of conducting polymers and predictive classifiers, Sensors and Actuators B 18-19 (1994) 240-243.
    • (1994) Sensors and Actuators B , vol.18-19 , pp. 240-243
    • Gardner, J.W.1    Pearce, T.C.2    Friel, S.3    Bartlett, P.N.4    Blair, N.5
  • 14
    • 0026153334 scopus 로고
    • Artificial neural networks and gas sensor arrays: Quantification of individual components in a gas mixture
    • H. Sundgren, F. Winquist, I. Lukkari and I. Lundstrm, Artificial neural networks and gas sensor arrays: Quantification of individual components in a Gas Mixture, Meas. Science Technology 2 (1991) 464-469.
    • (1991) Meas. Science Technology , vol.2 , pp. 464-469
    • Sundgren, H.1    Winquist, F.2    Lukkari, I.3    Lundstrm, I.4
  • 15
    • 0025430761 scopus 로고
    • Application of artificial neural networks to an electronic olfactory system
    • J. W. Gardner, E. L. Hines and M. Wilkinson, Application of artificial neural networks to an electronic olfactory system, Meas. Science Technology 1 (1990) 446-451.
    • (1990) Meas. Science Technology , vol.1 , pp. 446-451
    • Gardner, J.W.1    Hines, E.L.2    Wilkinson, M.3
  • 17
    • 0004042458 scopus 로고
    • Probenl a, set of neural network bench-mark problems and benchmarking rules
    • Fakultt fr Informatik, Germany, Universitt Karlsruhe
    • L. Prechelt, Probenl a, set of neural network bench-mark problems and benchmarking rules, Technical Report 21, Fakultt fr Informatik, Germany, Universitt Karlsruhe (1994), p. 38.
    • (1994) Technical Report , vol.21 , pp. 38
    • Prechelt, L.1
  • 19
    • 32144462595 scopus 로고    scopus 로고
    • Wavelet Filter for noise reduction and signal Compression in an artificial nose
    • Melbourne, Australia
    • C. Zanchettin and T. B. Ludermir, Wavelet Filter for noise reduction and signal Compression in an artificial nose, in Proc. Hybrid Intelligent System (Melbourne, Australia, 2003), pp. 907-916.
    • (2003) Proc. Hybrid Intelligent System , pp. 907-916
    • Zanchettin, C.1    Ludermir, T.B.2
  • 20
    • 10944267384 scopus 로고    scopus 로고
    • A neuro-fuzzy model applied to odor recognition in an artificial nose
    • Melbourne, Australia
    • C. Zanchettin and T. B. Ludermir, A Neuro-Fuzzy Model Applied to Odor Recognition in an Artificial Nose, in Proc. Hybrid Intelligent System (Melbourne, Australia, 2003), pp. 917-926.
    • (2003) Proc. Hybrid Intelligent System , pp. 917-926
    • Zanchettin, C.1    Ludermir, T.B.2
  • 25
    • 0025482241 scopus 로고
    • The wavelet transform, timefrequency localization and signal analysis
    • I. Daubechies, The wavelet transform, timefrequency localization and signal analysis, IEEE Transactions on Information Theory 36(5) (1990) 961-1005.
    • (1990) IEEE Transactions on Information Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 27
    • 0002557745 scopus 로고
    • Acoustic signal compression with wavelet packets
    • Charles K. Chui, Academic Press
    • M. V. Wickerhauser, Acoustic signal compression with wavelet packets, Charles K. Chui, Wavelets: A Tutorial in Theory and Applications, Academic Press 2 (1992) 679-700.
    • (1992) Wavelets: A Tutorial in Theory and Applications , vol.2 , pp. 679-700
    • Wickerhauser, M.V.1
  • 31
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • S. G. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7) (1989) 674-693.
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 32
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon, Individual comparisons by ranking Methods, Biometrics 1 (1945) 80-83.
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 33
    • 35048879280 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks applied to odor recognition
    • Science City, Calcutta, India
    • C. Zanchettin and T. B. Ludermir, Evolving fuzzy neural networks applied to odor recognition, Proc. Int. Conf. Neural Information Processing (Science City, Calcutta, India, 2004), pp. 953-958.
    • (2004) Proc. Int. Conf. Neural Information Processing , pp. 953-958
    • Zanchettin, C.1    Ludermir, T.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.