-
1
-
-
33644619607
-
-
hep-ph/0210192.
-
M. Apollonio, hep-ph/0210192.
-
-
-
Apollonio, M.1
-
2
-
-
33644616181
-
-
hep-ph/0506165.
-
B. Kayser, eConf C040802:L004 (2004), hep-ph/0506165.
-
(2004)
-
-
Kayser, B.1
-
3
-
-
33744752356
-
-
PRPLCM 0370-1573 10.1016/0370-1573(78)90095-9
-
S.M. Bilenky and B. Pontecorvo, Phys. Rep. 41, 225 (1978). PRPLCM 0370-1573 10.1016/0370-1573(78)90095-9
-
(1978)
Phys. Rep.
, vol.41
, pp. 225
-
-
Bilenky, S.M.1
Pontecorvo, B.2
-
6
-
-
19944406984
-
-
JTPLA2 0021-3640 10.1134/1.1780551
-
F.R. Klinkhamer, JETP Lett. 79, 451 (2004) JTPLA2 0021-3640 10.1134/1.1780551
-
(2004)
JETP Lett.
, vol.79
, pp. 451
-
-
Klinkhamer, F.R.1
-
8
-
-
32644441609
-
-
IMPAEF 0217-751X 10.1142/S0217751X06025298
-
F.R. Klinkhamer, Int. J. Mod. Phys. A 21, 161 (2006). IMPAEF 0217-751X 10.1142/S0217751X06025298
-
(2006)
Int. J. Mod. Phys. a
, vol.21
, pp. 161
-
-
Klinkhamer, F.R.1
-
9
-
-
33644545443
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.71.113008
-
F.R. Klinkhamer, Phys. Rev. D 71, 113008 (2005). PRVDAQ 0556-2821 10.1103/PhysRevD.71.113008
-
(2005)
Phys. Rev. D
, vol.71
, pp. 113008
-
-
Klinkhamer, F.R.1
-
10
-
-
19944402374
-
-
JTPLA2 0021-3640 10.1134/1.1825119
-
F.R. Klinkhamer and G.E. Volovik, JETP Lett. 80, 343 (2004) JTPLA2 0021-3640 10.1134/1.1825119
-
(2004)
JETP Lett.
, vol.80
, pp. 343
-
-
Klinkhamer, F.R.1
Volovik, G.E.2
-
13
-
-
23744475708
-
-
JTPLA2 0021-3640 10.1134/1.2029942
-
F.R. Klinkhamer and G.E. Volovik, JETP Lett. 81, 551 (2005) JTPLA2 0021-3640 10.1134/1.2029942
-
(2005)
JETP Lett.
, vol.81
, pp. 551
-
-
Klinkhamer, F.R.1
Volovik, G.E.2
-
15
-
-
29744465087
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.72.065009
-
D. Hooper, D. Morgan, and E. Winstanley, Phys. Rev. D 72, 065009 (2005). PRVDAQ 0556-2821 10.1103/PhysRevD.72.065009
-
(2005)
Phys. Rev. D
, vol.72
, pp. 065009
-
-
Hooper, D.1
Morgan, D.2
Winstanley, E.3
-
16
-
-
0001890489
-
-
PYLBAJ 0370-2693 10.1016/0370-2693(86)91126-3
-
M. Fukugita and T. Yanagida, Phys. Lett. B PYLBAJ 0370-2693 174, 45 (1986). 10.1016/0370-2693(86)91126-3
-
(1986)
Phys. Lett. B
, vol.174
, pp. 45
-
-
Fukugita, M.1
Yanagida, T.2
-
17
-
-
0037763054
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.67.073025
-
G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim, I. Masina, M.N. Rebelo, and C.A. Savoy, Phys. Rev. D 67, 073025 (2003). PRVDAQ 0556-2821 10.1103/PhysRevD.67.073025
-
(2003)
Phys. Rev. D
, vol.67
, pp. 073025
-
-
Branco, G.C.1
Gonzalez Felipe, R.2
Joaquim, F.R.3
Masina, I.4
Rebelo, M.N.5
Savoy, C.A.6
-
19
-
-
0002234964
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.37.8
-
G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976). PRLTAO 0031-9007 10.1103/PhysRevLett.37.8
-
(1976)
Phys. Rev. Lett.
, vol.37
, pp. 8
-
-
'T Hooft, G.1
-
20
-
-
0000321272
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.21.1591
-
N.H. Christ, Phys. Rev. D 21, 1591 (1980). PRVDAQ 0556-2821 10.1103/PhysRevD.21.1591
-
(1980)
Phys. Rev. D
, vol.21
, pp. 1591
-
-
Christ, N.H.1
-
21
-
-
0542451213
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.30.2212
-
F.R. Klinkhamer and N.S. Manton, Phys. Rev. D 30, 2212 (1984). PRVDAQ 0556-2821 10.1103/PhysRevD.30.2212
-
(1984)
Phys. Rev. D
, vol.30
, pp. 2212
-
-
Klinkhamer, F.R.1
Manton, N.S.2
-
23
-
-
0035884558
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.64.065024
-
F.R. Klinkhamer and Y.J. Lee, Phys. Rev. D 64, 065024 (2001); PRVDAQ 0556-2821 10.1103/PhysRevD.64.065024
-
(2001)
Phys. Rev. D
, vol.64
, pp. 065024
-
-
Klinkhamer, F.R.1
Lee, Y.J.2
-
25
-
-
0011254385
-
-
JTPLA2 0021-3640 10.1134/1.1368706
-
Consider, for example, an emergent-physics scenario with NF=3 fermion families and two cutoff scales: EUV∼1042GeV corresponding to the fundamental, Lorentz-violating fermionic theory and Ec∼1013GeV corresponding to the compositeness scale of the standard model gauge bosons. (The approximate numerical values of these cutoff scales are based on the gauge coupling constants measured at LEP and the corresponding renormalization group equations.) The idea, now, is that the ultrahigh-energy Lorentz violation reenters at ultralow energy (Ec)2/EUV∼10-7eV and that this energy scale determines the Lorentz noninvariance in the neutrino sector (b0(i)0). Reentrance effects in superfluid He3-A have been discussed by G.E. Volovik, JETP Lett. 73, 162 (2001) JTPLA2 0021-3640 10.1134/1.1368706
-
(2001)
JETP Lett.
, vol.73
, pp. 162
-
-
Volovik, G.E.1
-
27
-
-
84856131766
-
-
For standard mass-difference neutrino oscillations, matter effects (coherent forward scattering) from the Earth's mantle become important at Eν∼10GeV and L∼2500km; cf.Refs.
-
For standard mass-difference neutrino oscillations, matter effects (coherent forward scattering) from the Earth's mantle become important at Eν∼10GeV and L∼2500km; cf.Refs.
-
-
-
-
28
-
-
84856125791
-
-
The notation of the neutrino dispersion relation in Refs. differs from the one used here and in Ref., but the different sign of b0(f) can be compensated by a sign change of the complex phase. For example, setting =-ω in the exact model probability P(νμ→νe) from Eq.(11e) in Ref. reproduces the numerical ρ→ results for R=1, ω=χ21= χ32=π/4, and χ13=arctan 1/2 π/5 (these numerical results resemble those of Fig. 1 for χ13=π/4).
-
The notation of the neutrino dispersion relation in Refs. differs from the one used here and in Ref., but the different sign of b0(f) can be compensated by a sign change of the complex phase. For example, setting =-ω in the exact model probability P(νμ→νe) from Eq. (11e) in Ref. reproduces the numerical ρ→ results for R=1, ω=χ21=χ32=π/4, and χ13=arctan 1/2 π/5 (these numerical results resemble those of Fig. 1 for χ13=π/4).
-
-
-
-
29
-
-
33644615931
-
-
hep-ph/0509111.
-
For a case study and further model results, see an earlier version of this article, F.R. Klinkhamer, hep-ph/0509111.
-
-
-
Klinkhamer, F.R.1
-
30
-
-
33644612097
-
-
Super-Kamiokande data, interpreted with a pure Fermi-point-splitting model, may hint at a nonzero value of the complex phase, as argued in footnote b of Ref.
-
Super-Kamiokande data, interpreted with a pure Fermi-point-splitting model, may hint at a nonzero value of the complex phase, as argued in footnote b of Ref.
-
-
-
-
31
-
-
0000751022
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.57.6989
-
S. Geer, Phys. Rev. D 57, 6989 (1998); PRVDAQ 0556-2821 10.1103/PhysRevD.57.6989
-
(1998)
Phys. Rev. D
, vol.57
, pp. 6989
-
-
Geer, S.1
-
32
-
-
3843097992
-
-
PRVDAQ 0556-2821 10.1103/PhysRevD.59.039903
-
S. Geer Phys. Rev. D 59, 039903 (1999). PRVDAQ 0556-2821 10.1103/PhysRevD.59.039903
-
(1999)
Phys. Rev. D
, vol.59
, pp. 039903
-
-
Geer, S.1
-
33
-
-
0002641313
-
-
NUPBBO 0550-3213 10.1016/S0550-3213(00)00221-2
-
A. Cervera, A. Donini, M.B. Gavela, J.J. Gomez Cadenas, P. Hernandez, O. Mena, and S. Rigolin, Nucl. Phys. NUPBBO 0550-3213 B579, 17 (2000); 10.1016/S0550-3213(00)00221-2
-
(2000)
Nucl. Phys.
, vol.579
, pp. 17
-
-
Cervera, A.1
Donini, A.2
Gavela, M.B.3
Gomez Cadenas, J.J.4
Hernandez, P.5
Mena, O.6
Rigolin, S.7
-
34
-
-
0000847982
-
-
NUPBBO 0550-3213 10.1016/S0550-3213(00)00606-4
-
A. Cervera A. Donini M.B. Gavela J.J. Gomez Cadenas P. Hernandez O. Mena S. Rigolin Nucl. Phys. NUPBBO 0550-3213 B593, 731 (2001). 10.1016/S0550-3213(00) 00606-4
-
(2001)
Nucl. Phys.
, vol.593
, pp. 731
-
-
Cervera, A.1
Donini, A.2
Gavela, M.B.3
Gomez Cadenas, J.J.4
Hernandez, P.5
Mena, O.6
Rigolin, S.7
-
35
-
-
0037013688
-
-
NUPBBO 0550-3213 10.1016/S0550-3213(02)00211-0
-
A. Bueno, M. Campanelli, S. Navas-Concha, and A. Rubbia, Nucl. Phys. NUPBBO 0550-3213 B631, 239 (2002). 10.1016/S0550-3213(02)00211-0
-
(2002)
Nucl. Phys.
, vol.631
, pp. 239
-
-
Bueno, A.1
Campanelli, M.2
Navas-Concha, S.3
Rubbia, A.4
-
36
-
-
84856125789
-
-
See, in particular, Fig.18 for the T-violation discriminant ΔT Peμ-Pμe from pure mass-difference neutrino oscillations for reference values θ13 0.113 and Rm=1/30, with ΔT rapidly dropping to zero for Eν→. In contrast, the reference values of our model parameters are χ13=π/4 and R=1, with ΔT approaching a (generically nonzero) constant value for Eν→.
-
See, in particular, Fig. 18 for the T-violation discriminant ΔT Peμ-Pμe from pure mass-difference neutrino oscillations for reference values θ13 0.113 and Rm=1/30, with ΔT rapidly dropping to zero for Eν→. In contrast, the reference values of our model parameters are χ13=π/4 and R=1, with ΔT approaching a (generically nonzero) constant value for Eν→.
-
-
-
-
37
-
-
33644613793
-
-
hep-ex/0503053.
-
D.S. Ayres (NOνA Collaboration), hep-ex/0503053.
-
-
-
Ayres, D.S.1
|