-
1
-
-
0042522428
-
Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method
-
S. Abbasbandy Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method Appl. Math. Comput. 145 2003 887 893
-
(2003)
Appl. Math. Comput.
, vol.145
, pp. 887-893
-
-
Abbasbandy, S.1
-
2
-
-
0041620161
-
Geometric constructions of iterative functions to solve nonlinear equations
-
S. Amat, S. Busquier, and J.M. Gutierrez Geometric constructions of iterative functions to solve nonlinear equations J. Comput. Appl. Math. 157 2003 197 205
-
(2003)
J. Comput. Appl. Math.
, vol.157
, pp. 197-205
-
-
Amat, S.1
Busquier, S.2
Gutierrez, J.M.3
-
3
-
-
0036778809
-
Solution of nonlinear equations by adomian decomposition method
-
E. Babolian, and J. Biazar Solution of nonlinear equations by adomian decomposition method Appl. Math. Comput. 132 2002 167 172
-
(2002)
Appl. Math. Comput.
, vol.132
, pp. 167-172
-
-
Babolian, E.1
Biazar, J.2
-
4
-
-
0003179705
-
Newton's method with modified functions
-
A. Ben-Israel Newton's method with modified functions Contemporary Math. 204 1997 39 50
-
(1997)
Contemporary Math.
, vol.204
, pp. 39-50
-
-
Ben-Israel, A.1
-
5
-
-
0035399698
-
Improvement of some Ostrowski-Grüss type inequalities
-
X.L. Cheng Improvement of some Ostrowski-Grüss type inequalities Comput. Math. Appl. 42 2001 109 114
-
(2001)
Comput. Math. Appl.
, vol.42
, pp. 109-114
-
-
Cheng, X.L.1
-
6
-
-
0041602811
-
An iterative method for the solutions of nonlinear equations
-
F. Costabile, M.I. Gualtieri, and S.S. Capizzano An iterative method for the solutions of nonlinear equations Calcolo 30 1999 17 34
-
(1999)
Calcolo
, vol.30
, pp. 17-34
-
-
Costabile, F.1
Gualtieri, M.I.2
Capizzano, S.S.3
-
7
-
-
0003127857
-
A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means
-
S.S. Dragomir, P. Cerone, and J. Roumeliotis A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means Appl. Math. Lett. 13 2000 19 25
-
(2000)
Appl. Math. Lett.
, vol.13
, pp. 19-25
-
-
Dragomir, S.S.1
Cerone, P.2
Roumeliotis, J.3
-
8
-
-
0042413873
-
Hermite interpolation and a new iterative method for the computation of the roots of non-linear equations
-
M. Frontini Hermite interpolation and a new iterative method for the computation of the roots of non-linear equations Calcolo 40 2003 109 119
-
(2003)
Calcolo
, vol.40
, pp. 109-119
-
-
Frontini, M.1
-
9
-
-
0347128378
-
Third-order methods from quadrature formulae for solving systems of nonlinear equations
-
M. Frontini, and E. Sormani Third-order methods from quadrature formulae for solving systems of nonlinear equations Appl. Math. Comput. 149 2004 771 782
-
(2004)
Appl. Math. Comput.
, vol.149
, pp. 771-782
-
-
Frontini, M.1
Sormani, E.2
-
11
-
-
33644585226
-
An optimal quadrature formula of open type
-
N. Ujević An optimal quadrature formula of open type Yokohama Math. J. 50 2003 59 70
-
(2003)
Yokohama Math. J.
, vol.50
, pp. 59-70
-
-
Ujević, N.1
-
12
-
-
0141509034
-
New bounds for the first inequality of Ostrowski-Gruss type and applications
-
N. Ujević New bounds for the first inequality of Ostrowski-Gruss type and applications Comput. Math. Appl. 46 2003 421 427
-
(2003)
Comput. Math. Appl.
, vol.46
, pp. 421-427
-
-
Ujević, N.1
-
14
-
-
0012466757
-
A variant of Newton's method with accelerated third-order convergence
-
S. Weerakoon, and T.G. Fernando A variant of Newton's method with accelerated third-order convergence Appl. Math. Lett. 13 2000 87 93
-
(2000)
Appl. Math. Lett.
, vol.13
, pp. 87-93
-
-
Weerakoon, S.1
Fernando, T.G.2
-
15
-
-
0034546528
-
Historical development in convergence analysis for Newton's and Newton-like methods
-
T. Yamamoto Historical development in convergence analysis for Newton's and Newton-like methods J. Comput. Appl. Math. 124 2000 1 23
-
(2000)
J. Comput. Appl. Math.
, vol.124
, pp. 1-23
-
-
Yamamoto, T.1
|