-
3
-
-
28144438571
-
Wavelets and the numerical solution of partial differential equations
-
S. Qian J. Weiss Wavelets and the numerical solution of partial differential equations J. Comput. Phys. 106 1 1993 155-175
-
(1993)
J. Comput. Phys.
, vol.106
, Issue.1
, pp. 155-175
-
-
Qian, S.1
Weiss, J.2
-
4
-
-
0002423338
-
Wavelet solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension
-
SIAM, Philadelphia
-
Glowinski R, Lawton W, Ravachol M, Tanenbaum, E. Wavelet solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. In: Proceedings of the 9th International Conference on Numerical Methods in Applied Sciences and Engineering, SIAM, Philadelphia, 1990.
-
(1990)
Proceedings of the 9th International Conference on Numerical Methods in Applied Sciences and Engineering
-
-
Glowinski, R.1
Lawton, W.2
Ravachol, M.3
Tanenbaum, E.4
-
5
-
-
0028450372
-
Towards a method for solving partial differential equations by using wavelet packet bases
-
P. Joly Y. Maday V. Perrier Towards a method for solving partial differential equations by using wavelet packet bases Comput. Meth. Appl. Mech. Eng. 116 2 1994 193-202
-
(1994)
Comput. Meth. Appl. Mech. Eng.
, vol.116
, Issue.2
, pp. 193-202
-
-
Joly, P.1
Maday, Y.2
Perrier, V.3
-
6
-
-
0035280516
-
Wavelet methods for PDEs some recent developments
-
W. Dahmen Wavelet methods for PDEs some recent developments J. Comput. Appl. Math. 128 1-2 2001 133-185
-
(2001)
J. Comput. Appl. Math.
, vol.128
, Issue.1-2
, pp. 133-185
-
-
Dahmen, W.1
-
7
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
I. Daubechis Orthonormal bases of compactly supported wavelets Comm. Pure Appl. Math. 41 1988 906-966
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 906-966
-
-
Daubechis, I.1
-
10
-
-
0002286548
-
A spectrally formulated finite element for longitudinal wave propagation
-
J.F. Doyle A spectrally formulated finite element for longitudinal wave propagation Int. J. Anal. Exp. Modal Anal. 3 1988 1-5
-
(1988)
Int. J. Anal. Exp. Modal Anal.
, vol.3
, pp. 1-5
-
-
Doyle, J.F.1
-
11
-
-
0002169126
-
A spectrally formulated finite element for flexural wave propagation in beams
-
J.F. Doyle T.N. Farris A spectrally formulated finite element for flexural wave propagation in beams Int. J. Anal. Exp. Modal Anal. 5 1990 13-23
-
(1990)
Int. J. Anal. Exp. Modal Anal.
, vol.5
, pp. 13-23
-
-
Doyle, J.F.1
Farris, T.N.2
-
12
-
-
0025498865
-
A spectrally formulated finite element for wave propagation in 3-d frame structures
-
J.F. Doyle T.N. Farris A spectrally formulated finite element for wave propagation in 3-d frame structures Int. J. Anal. Exp. Modal Anal. 22 1990 223-237
-
(1990)
Int. J. Anal. Exp. Modal Anal.
, vol.22
, pp. 223-237
-
-
Doyle, J.F.1
Farris, T.N.2
-
13
-
-
0027115423
-
A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beam
-
S. Gopalakrishnan M. Martin J.F. Doyle A matrix methodology for spectral analysis of wave propagation in multiple connected Timoshenko beam J. Sound Vib. 158 1992 11-24
-
(1992)
J. Sound Vib.
, vol.158
, pp. 11-24
-
-
Gopalakrishnan, S.1
Martin, M.2
Doyle, J.F.3
-
14
-
-
0028468359
-
Wave propagation in multiply connected deep waveguides
-
M. Martin S. Gopalakrishnan J.F. Doyle Wave propagation in multiply connected deep waveguides J. Sound Vib. 174 4 1994 521-538
-
(1994)
J. Sound Vib.
, vol.174
, Issue.4
, pp. 521-538
-
-
Martin, M.1
Gopalakrishnan, S.2
Doyle, J.F.3
-
17
-
-
0037059253
-
On a wavelet based method for the numerical simulation of wave propagation
-
T.K. Hong B.L.N. Kennett On a wavelet based method for the numerical simulation of wave propagation J. Comput. Phys. 183 2002 577-622
-
(2002)
J. Comput. Phys.
, vol.183
, pp. 577-622
-
-
Hong, T.K.1
Kennett, B.L.N.2
-
18
-
-
18144417456
-
Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D. waveguides
-
accepted for publication
-
Mitra M, Gopalakrishnan S. Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides. Int J Solids Struct, accepted for publication.
-
Int J Solids Struct
-
-
Mitra, M.1
Gopalakrishnan, S.2
-
19
-
-
1842730296
-
A discrete wavelet transform without edge effects using wavelet extrapolation
-
J.R. Williams K. Amaratunga A discrete wavelet transform without edge effects using wavelet extrapolation J. Fourier Anal. Appl. 3 4 1997 435-449
-
(1997)
J. Fourier Anal. Appl.
, vol.3
, Issue.4
, pp. 435-449
-
-
Williams, J.R.1
Amaratunga, K.2
-
20
-
-
0031500499
-
Wavelet-Galerkin solution of boundary value problems
-
K. Amaratunga J.R. Williams Wavelet-Galerkin solution of boundary value problems Arch. Comput. Meth. Eng. 4 3 1997 243-285
-
(1997)
Arch. Comput. Meth. Eng.
, vol.4
, Issue.3
, pp. 243-285
-
-
Amaratunga, K.1
Williams, J.R.2
-
21
-
-
0029461620
-
Time integration using wavelets
-
Orlando, FL
-
Amaratunga K, Williams JR. Time integration using wavelets. In: Proceedings of SPIE, Wavelet Application for Dual Use 2491, Orlando, FL, 1995, pp. 894-902.
-
(1995)
Proceedings of SPIE, Wavelet Application for Dual Use 2491
, pp. 894-902
-
-
Amaratunga, K.1
Williams, J.R.2
-
22
-
-
33747020959
-
Extraction of wave characteristics from wavelet based spectral finite element formulation
-
in press
-
Mitra M, Gopalakrishnan S. Extraction of wave characteristics from wavelet based spectral finite element formulation. Mechanical Systems and Signal Processing, in press.
-
Mechanical Systems and Signal Processing
-
-
Mitra, M.1
Gopalakrishnan, S.2
-
23
-
-
0345567049
-
A note on wavelet-based method for damage detection
-
L. Zhang S.T. Quek Q. Wang A note on wavelet-based method for damage detection J. Appl. Mech. 68 2001 812-814
-
(2001)
J. Appl. Mech.
, vol.68
, pp. 812-814
-
-
Zhang, L.1
Quek, S.T.2
Wang, Q.3
-
24
-
-
0037667683
-
Active monitoring for on-line damage detection in composite structures
-
S. Yuan W. Lei L. Shi Active monitoring for on-line damage detection in composite structures J. Vib. Acoust. 125 2003 178-186
-
(2003)
J. Vib. Acoust.
, vol.125
, pp. 178-186
-
-
Yuan, S.1
Lei, W.2
Shi, L.3
-
26
-
-
0033732108
-
Wavelet analysis of plate wave propagation in composite laminates
-
H. Jeong Y.S. Jang Wavelet analysis of plate wave propagation in composite laminates Compos. Struct. 49 2000 443-450
-
(2000)
Compos. Struct.
, vol.49
, pp. 443-450
-
-
Jeong, H.1
Jang, Y.S.2
-
28
-
-
0037210741
-
A spectral finite element model for analysis of axial flexural shear coupled wave propagation in laminated composite beams
-
D.R. Mahapatra S. Gopalakrishnan A spectral finite element model for analysis of axial flexural shear coupled wave propagation in laminated composite beams Compos. Struct. 59 1 2003 67-88
-
(2003)
Compos. Struct.
, vol.59
, Issue.1
, pp. 67-88
-
-
Mahapatra, D.R.1
Gopalakrishnan, S.2
-
29
-
-
0342527586
-
Spectral-element-based solution for wave propagation analysis of multiply connected unsymmetric laminated composite beams
-
D.R. Mahapatra S. Gopalakrishnan T.S. Shankar Spectral-element-based solution for wave propagation analysis of multiply connected unsymmetric laminated composite beams J. Sound Vib. 237 5 2000 819-836
-
(2000)
J. Sound Vib.
, vol.237
, Issue.5
, pp. 819-836
-
-
Mahapatra, D.R.1
Gopalakrishnan, S.2
Shankar, T.S.3
-
30
-
-
0037992626
-
A spectrally formulated finite element for wave propagation analysis in functionally graded beams
-
A. Chakraborty S. Gopalakrishnan A spectrally formulated finite element for wave propagation analysis in functionally graded beams Int. J. Solid Struct. 40 10 2003 2421-2448
-
(2003)
Int. J. Solid Struct.
, vol.40
, Issue.10
, pp. 2421-2448
-
-
Chakraborty, A.1
Gopalakrishnan, S.2
-
31
-
-
0026995365
-
On the representation of operators in bases of compactly supported wavelets
-
G. Beylkin On the representation of operators in bases of compactly supported wavelets SIAM J. Numer. Anal. 6 6 1992 1716-1740
-
(1992)
SIAM J. Numer. Anal.
, vol.6
, Issue.6
, pp. 1716-1740
-
-
Beylkin, G.1
-
32
-
-
38249005783
-
Wavelets and the numerical solution of boundary value problems
-
S. Qian J. Weiss Wavelets and the numerical solution of boundary value problems Appl. Math. Lett. 6 1 1993 47-52
-
(1993)
Appl. Math. Lett.
, vol.6
, Issue.1
, pp. 47-52
-
-
Qian, S.1
Weiss, J.2
-
35
-
-
10844286472
-
A higher order spectral element for wave propagation analysis in functionally graded materials
-
A. Chakraborty S. Gopalakrishnan A higher order spectral element for wave propagation analysis in functionally graded materials Acta Mechanica 172 1-2 2005 17-43
-
(2005)
Acta Mechanica
, vol.172
, Issue.1-2
, pp. 17-43
-
-
Chakraborty, A.1
Gopalakrishnan, S.2
|