메뉴 건너뛰기




Volumn , Issue , 2005, Pages 105-114

Spatial Bayesian learning algorithms for geographic information retrieval

Author keywords

Geographic information retrieval; Geographic information system; Information retrieval; Learning Bayesian networks; Spatial Bayesian learning

Indexed keywords

ALGORITHMS; AUTOMATION; COMPUTER SIMULATION; INFORMATION RETRIEVAL; INTERNET; MAPPING;

EID: 33644606194     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1097064.1097080     Document Type: Conference Paper
Times cited : (12)

References (29)
  • 1
    • 33644596482 scopus 로고    scopus 로고
    • Environmental Systems Research Institute, accessed on: 14-Jan-2003
    • "ArcView," Environmental Systems Research Institute, 2003, http://www.esri.com/, accessed on: 14-Jan-2003.
    • (2003) ArcView
  • 2
    • 3042753314 scopus 로고    scopus 로고
    • A Bayesian framework for automated dataset retrieval in Geographic Information Systems
    • Brisbane, Australia
    • A. Walker, B. Pham, and A. Maeder, "A Bayesian framework for automated dataset retrieval in Geographic Information Systems," presented at The 10th International Conference on Multi-Media Modeling, Brisbane, Australia, 2004.
    • (2004) 10th International Conference on Multi-media Modeling
    • Walker, A.1    Pham, B.2    Maeder, A.3
  • 3
    • 3042825233 scopus 로고    scopus 로고
    • Using spatial information for a sustainable SEQ
    • Brisbane
    • Queensland Government, "Using spatial information for a sustainable SEQ," presented at 2002 SEQ Spatial Information Expo, Brisbane, 2002.
    • (2002) 2002 SEQ Spatial Information Expo
  • 4
    • 33644596016 scopus 로고    scopus 로고
    • Australian Government, accessed on: 29-Nov-2004
    • "Geoscience Australia," Australian Government, 2004, http://www.ga.gov.au, accessed on: 29-Nov-2004.
    • (2004) Geoscience Australia
  • 5
    • 33644598717 scopus 로고    scopus 로고
    • ESRI, accessed on: 31-May-2005
    • "Geography Network," ESRI, 2005, http://www.geographynetwork. com/, accessed on: 31-May-2005.
    • (2005) Geography Network
  • 6
    • 3042822311 scopus 로고    scopus 로고
    • accessed on: 30-June-2003
    • "Open GIS Consortium," 2003, http://www.opengis.org/, accessed on: 30-June-2003.
    • (2003) Open GIS Consortium
  • 7
    • 33644609725 scopus 로고    scopus 로고
    • accessed on: 4-July-2003
    • "OGC WMS Viewer," 2003, http://www.wmsviewer.com/, accessed on: 4-July-2003.
    • (2003) OGC WMS Viewer
  • 8
    • 0029273441 scopus 로고
    • Applying Bayesian networks to information retrieval
    • ACM Press
    • R. Fung and B. Del Favero, "Applying Bayesian networks to information retrieval," Communications of the ACM, ACM Press, vol. 38, pp. 42-57, 1995.
    • (1995) Communications of the ACM , vol.38 , pp. 42-57
    • Fung, R.1    Del Favero, B.2
  • 14
    • 0141462964 scopus 로고    scopus 로고
    • School of Electrical and Electronic Systems Engineering. Brisbane: Queensland University of Technology
    • A. A. Skabar, "Inductive Learning Techniques for Mineral Potential Mapping," in School of Electrical and Electronic Systems Engineering. Brisbane: Queensland University of Technology, 2000, pp. 226.
    • (2000) Inductive Learning Techniques for Mineral Potential Mapping , pp. 226
    • Skabar, A.A.1
  • 18
    • 0030737325 scopus 로고    scopus 로고
    • Answering queries from context-sensitive probabilistic knowledge bases
    • N. Liem and P. Haddawy, "Answering queries from context-sensitive probabilistic knowledge bases," Theoretical Computer Science, vol. 171, pp. 147-177, 1997.
    • (1997) Theoretical Computer Science , vol.171 , pp. 147-177
    • Liem, N.1    Haddawy, P.2
  • 23
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • D. M. Chickering, "Learning Equivalence Classes of Bayesian-Network Structures," Journal of Machine Learning Research, vol. 2, pp. 445-498, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 24
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits, "A Bayesian Method for the Induction of Probabilistic Networks from Data," Machine Learning, vol. 9, pp. 309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 25
    • 0003694781 scopus 로고    scopus 로고
    • MIT, accessed on: May-2004
    • "Bayes Net Toolbox for Matlab," MIT, 2004, http://www.ai.mit. edu/~murphyk/Software/BNT/bnt.html, accessed on: May-2004.
    • (2004) Bayes Net Toolbox for Matlab
  • 27
    • 33646161567 scopus 로고    scopus 로고
    • Modeling spatial dependencies for mining geospatial data: An introduction
    • H. Miller and J. Han, Eds. Taylor and Francis
    • S. Chawla, S. Shekhar, W. Wu, and U. Ozesmi, "Modeling spatial dependencies for mining geospatial data: An introduction," in In Geographic data mining and Knowledge Discovery(GKD), H. Miller and J. Han, Eds. Taylor and Francis, 2001.
    • (2001) In Geographic Data Mining and Knowledge Discovery(GKD)
    • Chawla, S.1    Shekhar, S.2    Wu, W.3    Ozesmi, U.4
  • 29
    • 33644607697 scopus 로고    scopus 로고
    • Microsoft, accessed on: 1-12-2003
    • "MSBNx: Bayesian Network Editor and Toolkit," Microsoft, 2003, http://research.microsoft.com/adapt/msbnx/default.aspx, accessed on: 1-12-2003.
    • (2003) MSBNx: Bayesian Network Editor and Toolkit


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.