-
1
-
-
0033823845
-
Rotary honing: A variant of the Taylor paint-scraper problem
-
Hills, C. P. & Moffatt, H. K. 2000 Rotary honing: A variant of the Taylor paint-scraper problem. J. Fluid Mech. 418, 119-135.
-
(2000)
J. Fluid Mech.
, vol.418
, pp. 119-135
-
-
Hills, C.P.1
Moffatt, H.K.2
-
3
-
-
0018544582
-
Slow viscous flow due to the motion of a sphere on the axis of a circular cone
-
Kim, M.-U. 1979 Slow viscous flow due to the motion of a sphere on the axis of a circular cone. J. Phys. Soc. Japan 47, 1670-1675.
-
(1979)
J. Phys. Soc. Japan
, vol.47
, pp. 1670-1675
-
-
Kim, M.-U.1
-
5
-
-
0342587821
-
Stokes flow in conical trenches
-
Liu, C. H. & Joseph, D. D. 1978 Stokes flow in conical trenches. SIAM J. Appl. Maths 34, 286-296.
-
(1978)
SIAM J. Appl. Maths
, vol.34
, pp. 286-296
-
-
Liu, C.H.1
Joseph, D.D.2
-
6
-
-
13444293048
-
Viscous eddies in a circular cone
-
Malyuga, V. S. 2005 Viscous eddies in a circular cone. J. Fluid Mech. 522, 101-116.
-
(2005)
J. Fluid Mech.
, vol.522
, pp. 101-116
-
-
Malyuga, V.S.1
-
7
-
-
0000728015
-
Steady Stokes flow in a finite cylinder
-
Meleshko, V. V., Malyuga, V. S. & Gomilko, A. M. 2000 Steady Stokes flow in a finite cylinder. Proc. R. Soc. A 456, 1741-1758.
-
(2000)
Proc. R. Soc. A
, vol.456
, pp. 1741-1758
-
-
Meleshko, V.V.1
Malyuga, V.S.2
Gomilko, A.M.3
-
8
-
-
77952889884
-
Viscous and resistive eddies near a sharp corner
-
Moffatt, H. K. 1964a Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1-118.
-
(1964)
J. Fluid Mech.
, vol.18
, pp. 1-118
-
-
Moffatt, H.K.1
-
9
-
-
0012904543
-
Viscous eddies near a sharp corner
-
Moffatt, H. K. 1964b Viscous eddies near a sharp corner. Arch. Mech. Stosow. 2, 365-372.
-
(1964)
Arch. Mech. Stosow.
, vol.2
, pp. 365-372
-
-
Moffatt, H.K.1
-
10
-
-
0001658307
-
Local similarity solutions and thier limitations
-
Moffatt, H. K. & Duffy, B. R. 1980 Local similarity solutions and thier limitations. J. Fluid Mech. 96, 299-313.
-
(1980)
J. Fluid Mech.
, vol.96
, pp. 299-313
-
-
Moffatt, H.K.1
Duffy, B.R.2
-
13
-
-
0019010989
-
Three-dimensional Moffatt-type eddies due to a Stokeslet in a corner
-
Sano, O. & Hasimoto, H. 1980 Three-dimensional Moffatt-type eddies due to a Stokeslet in a corner. J. Phys. Soc. Japan 48, 1763-1768.
-
(1980)
J. Phys. Soc. Japan
, vol.48
, pp. 1763-1768
-
-
Sano, O.1
Hasimoto, H.2
-
14
-
-
0031177746
-
Three-dimensional eddy structure in a cylindrical container
-
Shankar, P. N. 1997 Three-dimensional eddy structure in a cylindrical container. J. Fluid Mech. 342, 97-118.
-
(1997)
J. Fluid Mech.
, vol.342
, pp. 97-118
-
-
Shankar, P.N.1
-
15
-
-
0001211926
-
Three-dimensional Stokes flow in a cylindrical container
-
Shankar, P. N. 1998 Three-dimensional Stokes flow in a cylindrical container. Phys. Fluids 10, 540-549.
-
(1998)
Phys. Fluids
, vol.10
, pp. 540-549
-
-
Shankar, P.N.1
-
16
-
-
0034634844
-
On Stokes flow in a semi-infinite wedge
-
Shankar, P. N. 2000 On Stokes flow in a semi-infinite wedge. J. Fluid Mech. 422, 69-90.
-
(2000)
J. Fluid Mech.
, vol.422
, pp. 69-90
-
-
Shankar, P.N.1
-
17
-
-
0344667658
-
Oscillatory eddy structure in a container
-
Shankar, P. N., Kidambi, R. & Hariharan, J. 2003 Oscillatory eddy structure in a container. J. Fluid Mech. 494, 163-185.
-
(2003)
J. Fluid Mech.
, vol.494
, pp. 163-185
-
-
Shankar, P.N.1
Kidambi, R.2
Hariharan, J.3
-
18
-
-
0020207114
-
General solution of the Stokes' flow equations
-
Tran-Cong, T. & Blake, J. R. 1982 General solution of the Stokes' flow equations. J. Math. Anal. Appl. 90, 72-84.
-
(1982)
J. Math. Anal. Appl.
, vol.90
, pp. 72-84
-
-
Tran-Cong, T.1
Blake, J.R.2
-
19
-
-
0016877783
-
Axisymmetric flow of a viscous fluid near the vertex of a body
-
Wakiya, S. 1976 Axisymmetric flow of a viscous fluid near the vertex of a body. J. Fluid Mech. 78, 737-747.
-
(1976)
J. Fluid Mech.
, vol.78
, pp. 737-747
-
-
Wakiya, S.1
-
20
-
-
0032672930
-
Instantaneous Stokes flow in a conical apex aligned with gravity and bounded by a stress-free surface
-
Weidman, P. D. & Calmidi, V. 1999 Instantaneous Stokes flow in a conical apex aligned with gravity and bounded by a stress-free surface. SIAM J. Appl. Maths 59, 1520-1531.
-
(1999)
SIAM J. Appl. Maths
, vol.59
, pp. 1520-1531
-
-
Weidman, P.D.1
Calmidi, V.2
|