-
1
-
-
0346876659
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.84.4184
-
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.84.4184 84, 4184 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 4184
-
-
Smith, D.R.1
Padilla, W.J.2
Vier, D.C.3
Nemat-Nasser, S.C.4
Schultz, S.5
-
2
-
-
2642545046
-
-
CTPHAF 0010-7514 10.1080/00107510410001667434
-
J. B. Pendry, Contemp. Phys. CTPHAF 0010-7514 10.1080/ 00107510410001667434 45, 191 (2004).
-
(2004)
Contemp. Phys.
, vol.45
, pp. 191
-
-
Pendry, J.B.1
-
5
-
-
27144463601
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.067402
-
Y.-F. Chen, P. Fischer, and F. W. Wise, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.067402 95, 067402 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 067402
-
-
Chen, Y.-F.1
Fischer, P.2
Wise, F.W.3
-
6
-
-
85010244173
-
-
SOPUAP 0038-5670 10.1070/PU1968v010n04ABEH003699
-
V. G. Veselago, Sov. Phys. Usp. SOPUAP 0038-5670 10.1070/ PU1968v010n04ABEH003699 10, 509 (1968).
-
(1968)
Sov. Phys. Usp.
, vol.10
, pp. 509
-
-
Veselago, V.G.1
-
7
-
-
0034296247
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.85.3966
-
J. B. Pendry, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85. 3966 85, 3966 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 3966
-
-
Pendry, J.B.1
-
13
-
-
33644546979
-
-
If the medium is conducting at zero frequency, the electric χ is singular at ω=0. Although χ is not square integrable in this case, relations similar to Eq. 2 can be derived.
-
If the medium is conducting at zero frequency, the electric χ is singular at ω=0. Although χ is not square integrable in this case, relations similar to Eq. 2 can be derived.
-
-
-
-
14
-
-
33644556099
-
-
Let F(s) be the Laplace transform of the Laplace transformable function f(t). A well-known result in the theory of Laplace transforms states that if F(â iω)exp(â iωÏ.,)â†' 0 as Im ωâ†' â , then the inverse transform of F is zero for t<Ï., (see, for example, Ref.).
-
Let F(s) be the Laplace transform of the Laplace transformable function f(t). A well-known result in the theory of Laplace transforms states that if F(â iω)exp(â iωÏ.,)â†' 0 as Im ωâ†' â, then the inverse transform of F is zero for t<Ï., (see, for example, Ref.).
-
-
-
-
15
-
-
33644557986
-
-
Any physical excitation is real and can be represented by two complex terms, e.g., u(t)exp(â i ω1 t)+u(t)exp(i ω 1* t). This excitation would require the substitution 1â •(i ω1 â iω)â†' 1â •(i ω1 â iω)+1â •(â i ω1* â iω) in Eq. 10. For clarity it is often convenient to consider the positive frequency excitation separately.
-
Any physical excitation is real and can be represented by two complex terms, e.g., u(t)exp(â i ω1 t)+u(t)exp(i ω1 * t). This excitation would require the substitution 1â •(i ω1 â iω)â†' 1â •(i ω1 â iω)+1â •(â i ω1* â iω) in Eq. 10. For clarity it is often convenient to consider the positive frequency excitation separately.
-
-
-
-
16
-
-
33644545015
-
-
One may argue that the asymptotic form of Ïμâ 1 for large ω is different from the usually assumed dependence 1â • ω2. Without significantly altering g in the region ⠣ωâ ω0 ⠣≠2Î" this can be fixed for instance by letting gâ†'(g+ FÌf) ωÌf 02 â • (ωÌf 02 â ω2 â iω Î"Ìf) where â £ FÌf â £âa¡1, ωÌf 0 âa¢ ω0, and 0< Î"Ìf âa¡ ωÌf 0 â ω0.
-
One may argue that the asymptotic form of Ïμâ 1 for large ω is different from the usually assumed dependence 1â • ω2. Without significantly altering g in the region ⠣ωâ ω0 ⠣≠2Î" this can be fixed for instance by letting gâ†' (g+ FÌf) ωÌf 02 â • (ωÌf 02 â ω2 â iω Î"Ìf) where â £ FÌf â £âa¡1, ωÌf 0 âa¢ ω0, and 0< Î"Ìf âa¡ ωÌf 0 â ω0.
-
-
-
|