메뉴 건너뛰기




Volumn 73, Issue 2, 2006, Pages

Fresnel equations and the refractive index of active media

Author keywords

[No Author keywords available]

Indexed keywords

NONLINEAR EQUATIONS; VECTORS; VELOCITY MEASUREMENT;

EID: 33644502567     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.73.026605     Document Type: Article
Times cited : (104)

References (16)
  • 2
    • 2642545046 scopus 로고    scopus 로고
    • CTPHAF 0010-7514 10.1080/00107510410001667434
    • J. B. Pendry, Contemp. Phys. CTPHAF 0010-7514 10.1080/ 00107510410001667434 45, 191 (2004).
    • (2004) Contemp. Phys. , vol.45 , pp. 191
    • Pendry, J.B.1
  • 5
    • 27144463601 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.95.067402
    • Y.-F. Chen, P. Fischer, and F. W. Wise, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.067402 95, 067402 (2005).
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 067402
    • Chen, Y.-F.1    Fischer, P.2    Wise, F.W.3
  • 6
    • 85010244173 scopus 로고
    • SOPUAP 0038-5670 10.1070/PU1968v010n04ABEH003699
    • V. G. Veselago, Sov. Phys. Usp. SOPUAP 0038-5670 10.1070/ PU1968v010n04ABEH003699 10, 509 (1968).
    • (1968) Sov. Phys. Usp. , vol.10 , pp. 509
    • Veselago, V.G.1
  • 7
    • 0034296247 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.85.3966
    • J. B. Pendry, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85. 3966 85, 3966 (2000).
    • (2000) Phys. Rev. Lett. , vol.85 , pp. 3966
    • Pendry, J.B.1
  • 13
    • 33644546979 scopus 로고    scopus 로고
    • If the medium is conducting at zero frequency, the electric χ is singular at ω=0. Although χ is not square integrable in this case, relations similar to Eq. 2 can be derived.
    • If the medium is conducting at zero frequency, the electric χ is singular at ω=0. Although χ is not square integrable in this case, relations similar to Eq. 2 can be derived.
  • 14
    • 33644556099 scopus 로고    scopus 로고
    • Let F(s) be the Laplace transform of the Laplace transformable function f(t). A well-known result in the theory of Laplace transforms states that if F(â iω)exp(â iωÏ.,)â†' 0 as Im ωâ†' â , then the inverse transform of F is zero for t<Ï., (see, for example, Ref.).
    • Let F(s) be the Laplace transform of the Laplace transformable function f(t). A well-known result in the theory of Laplace transforms states that if F(â iω)exp(â iωÏ.,)â†' 0 as Im ωâ†' â, then the inverse transform of F is zero for t<Ï., (see, for example, Ref.).
  • 15
    • 33644557986 scopus 로고    scopus 로고
    • Any physical excitation is real and can be represented by two complex terms, e.g., u(t)exp(â i ω1 t)+u(t)exp(i ω 1* t). This excitation would require the substitution 1â •(i ω1 â iω)â†' 1â •(i ω1 â iω)+1â •(â i ω1* â iω) in Eq. 10. For clarity it is often convenient to consider the positive frequency excitation separately.
    • Any physical excitation is real and can be represented by two complex terms, e.g., u(t)exp(â i ω1 t)+u(t)exp(i ω1 * t). This excitation would require the substitution 1â •(i ω1 â iω)â†' 1â •(i ω1 â iω)+1â •(â i ω1* â iω) in Eq. 10. For clarity it is often convenient to consider the positive frequency excitation separately.
  • 16
    • 33644545015 scopus 로고    scopus 로고
    • One may argue that the asymptotic form of Ïμâ 1 for large ω is different from the usually assumed dependence 1â • ω2. Without significantly altering g in the region ⠣ωâ ω0 ⠣≠2Î" this can be fixed for instance by letting gâ†'(g+ FÌf) ωÌf 02 â • (ωÌf 02 â ω2 â iω Î"Ìf) where â £ FÌf â £âa¡1, ωÌf 0 âa¢ ω0, and 0< Î"Ìf âa¡ ωÌf 0 â ω0.
    • One may argue that the asymptotic form of Ïμâ 1 for large ω is different from the usually assumed dependence 1â • ω2. Without significantly altering g in the region ⠣ωâ ω0 ⠣≠2Î" this can be fixed for instance by letting gâ†' (g+ FÌf) ωÌf 02 â • (ωÌf 02 â ω2 â iω Î"Ìf) where â £ FÌf â £âa¡1, ωÌf 0 âa¢ ω0, and 0< Î"Ìf âa¡ ωÌf 0 â ω0.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.