-
1
-
-
0007232086
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.62.013411
-
R. M. Godun, M. B. d'Arcy, M. K. Oberthaler, G. S. Summy, and K. Burnett, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.62.013411 62, 013411 (2000);
-
(2000)
Phys. Rev. A
, vol.62
, pp. 013411
-
-
Godun, R.M.1
D'Arcy, M.B.2
Oberthaler, M.K.3
Summy, G.S.4
Burnett, K.5
-
2
-
-
0035509918
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.64.056233
-
M. B. d'Arcy, R. M. Godun, M. K. Oberthaler, G. S. Summy, K. Burnett, and S. A. Gardiner, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.64.056233 64, 056233 (2001);
-
(2001)
Phys. Rev. e
, vol.64
, pp. 056233
-
-
D'Arcy, M.B.1
Godun, R.M.2
Oberthaler, M.K.3
Summy, G.S.4
Burnett, K.5
Gardiner, S.A.6
-
3
-
-
0037422969
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.90.054101
-
S. Schlunk, M. B. d'Arcy, S. A. Gardiner, D. Cassettari, R. M. Godun, and G. S. Summy, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.054101 90, 054101 (2003);
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 054101
-
-
Schlunk, S.1
D'Arcy, M.B.2
Gardiner, S.A.3
Cassettari, D.4
Godun, R.M.5
Summy, G.S.6
-
4
-
-
0038735503
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.90.124102
-
S. Schlunk, M. B. d'Arcy, S. A. Gardiner, and G. S. Summy, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.90.124102 90, 124102 (2003);
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 124102
-
-
Schlunk, S.1
D'Arcy, M.B.2
Gardiner, S.A.3
Summy, G.S.4
-
5
-
-
18544389429
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.164101
-
Z.-Y. Ma, M. B. d'Arcy, and S. A. Gardiner, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.164101 93, 164101 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 164101
-
-
Ma, Z.-Y.1
D'Arcy, M.B.2
Gardiner, S.A.3
-
11
-
-
24544470285
-
-
PDNPDT 0167-2789 10.1016/0167-2789(87)90123-0
-
D. L. Shepelyansky, Physica D PDNPDT 0167-2789 10.1016/0167-2789(87) 90123-0 28, 103 (1987).
-
(1987)
Physica D
, vol.28
, pp. 103
-
-
Shepelyansky, D.L.1
-
12
-
-
0000974397
-
-
PRPLCM 0370-1573 10.1016/0370-1573(90)90067-C
-
F. M. Izrailev, Phys. Rep. PRPLCM 0370-1573 10.1016/0370-1573(90)90067-C 196, 299 (1990), and references therein.
-
(1990)
Phys. Rep.
, vol.196
, pp. 299
-
-
Izrailev, F.M.1
-
13
-
-
0001840092
-
-
PLRAAN 1050-2947 10.1103/PhysRevA.34.7
-
S.-J. Chang and K.-J. Shi, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.34.7 34, 7 (1986).
-
(1986)
Phys. Rev. A
, vol.34
, pp. 7
-
-
Chang, S.-J.1
Shi, K.-J.2
-
14
-
-
0037134386
-
-
JPHAC5 0305-4470 10.1088/0305-4470/35/15/307
-
I. Dana, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/35/15/307 35, 3447 (2002), and references therein.
-
(2002)
J. Phys. A
, vol.35
, pp. 3447
-
-
Dana, I.1
-
15
-
-
0030417859
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.54.5948
-
I. Dana, E. Eisenberg, and N. Shnerb, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.54.5948 54, 5948 (1996), and references therein.
-
(1996)
Phys. Rev. e
, vol.54
, pp. 5948
-
-
Dana, I.1
Eisenberg, E.2
Shnerb, N.3
-
18
-
-
5544291407
-
-
PDNPDT 0167-2789 10.1016/0167-2789(84)90185-4
-
M. V. Berry, Physica D PDNPDT 0167-2789 10.1016/0167-2789(84)90185-4 10, 369 (1984).
-
(1984)
Physica D
, vol.10
, pp. 369
-
-
Berry, M.V.1
-
19
-
-
33344467301
-
-
In Ref., the potential 9 was assumed to be even (real Vm = V-m). We present here the straightforward extension of some results in Ref. to the most general V(θ).
-
In Ref., the potential 9 was assumed to be even (real Vm = V-m). We present here the straightforward extension of some results in Ref. to the most general V(θ).
-
-
-
-
20
-
-
0003498504
-
-
Academic Press, New York
-
I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic Press, New York, 1980).
-
(1980)
Tables of Integrals, Series, and Products
-
-
Gradshteyn, I.S.1
Ryzhik, I.M.2
-
21
-
-
33344457493
-
-
Due to the uniformity of ψβ (θ), Eq. 21 gives also the angular-momentum distribution for a β -KR initially in the angular-momentum state n=0. Then, the γ=0 expression P(n+β,t)= Jn2 [k1 (β,t)] is just the known exact result for this distribution in the case of V(θ)=cos(θ).
-
Due to the uniformity of ψβ (θ), Eq. 21 gives also the angular-momentum distribution for a β -KR initially in the angular-momentum state n=0. Then, the γ=0 expression P(n+β,t)= Jn2 [k1 (β,t)] is just the known exact result for this distribution in the case of V(θ)=cos(θ).
-
-
-
|