-
2
-
-
0141512590
-
-
Lukacs, G., Ed.; Springer: Berlin
-
(b) Suzuki, K.; Matsumoto, T. In Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products, Vol. 2; Lukacs, G., Ed.; Springer: Berlin, 1993, 353.
-
(1993)
Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products, Vol. 2
, vol.2
, pp. 353
-
-
Suzuki, K.1
Matsumoto, T.2
-
5
-
-
0017571787
-
-
(b) Pluramycin, A.; Kondo, S.; Miyamoto, M.; Naganawa, H.; Takeuchi, T.; Umezawa, H. J. Antibiot. 1977, 30, 1143.
-
(1977)
J. Antibiot.
, vol.30
, pp. 1143
-
-
Pluramycin, A.1
Kondo, S.2
Miyamoto, M.3
Naganawa, H.4
Takeuchi, T.5
Umezawa, H.6
-
7
-
-
0016834375
-
-
(d) Kidamycin: Furukawa, M.; Hayakawa, I.; Ohta, G.; Iitaka, Y. Tetrahedron 1975, 31, 2989.
-
(1975)
Tetrahedron
, vol.31
, pp. 2989
-
-
Furukawa, M.1
Hayakawa, I.2
Ohta, G.3
Iitaka, Y.4
-
10
-
-
0034823301
-
-
(b) Kaelin, D. E. Jr.; Lopez, O. D.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 6937.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 6937
-
-
Kaelin Jr., D.E.1
Lopez, O.D.2
Martin, S.F.3
-
12
-
-
0001397662
-
-
(a) Matsumoto, T.; Katsuki, M.; Suzuki, K. Tetrahedron Lett. 1988, 29, 6935.
-
(1988)
Tetrahedron Lett.
, vol.29
, pp. 6935
-
-
Matsumoto, T.1
Katsuki, M.2
Suzuki, K.3
-
14
-
-
0034699824
-
-
Matsumoto, T.; Yamaguchi, H.; Tanabe, M.; Yasui, Y.; Suzuki, K. Tetrahedron Lett. 2000, 41, 8393.
-
(2000)
Tetrahedron Lett.
, vol.41
, pp. 8393
-
-
Matsumoto, T.1
Yamaguchi, H.2
Tanabe, M.3
Yasui, Y.4
Suzuki, K.5
-
15
-
-
0028209470
-
-
Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 1004
-
-
Hosoya, T.1
Takashiro, E.2
Matsumoto, T.3
Suzuki, K.4
-
16
-
-
1242296151
-
-
(a) Ben, A.; Yamauchi, T.; Matsumoto, T.; Suzuki, K. Synlett 2004, 225.
-
(2004)
Synlett
, pp. 225
-
-
Ben, A.1
Yamauchi, T.2
Matsumoto, T.3
Suzuki, K.4
-
17
-
-
0032770704
-
-
3, Drierite®, 1,2-dichloroethane, -30°C to T°C] is shown below. The outcome was not satisfactory, but was better than those from other attempted conditions. When the reaction was stopped at 0°C, the desired bis-C-glycoside 28 was obtained in 48% yield along with the O-glycoside 27 (29%). This shows that the protection of one of the phenolic hydroxyls remarkably retards both of the O-glycosylation and the migration of the sugar [note: the reaction of 8e and 5 went to completion at 0°C]. Further warming of the reaction accelerated the O-glycosidation and the migration of the sugar, but also caused undesired reactions to give many side products including 29 as the main constituent, which was most probably formed by the hydride shift from the C(5) of the sugar to the C(1) (see A). The yield of 28 did not exceed 68%. Prolongation of the reaction time around 0°C did not give better result (Scheme 4).
-
(1999)
Eur. J. Org. Chem.
, pp. 15
-
-
Kobayashi, S.1
-
18
-
-
33344457170
-
-
note
-
Molecular sieves (5A) are also usable but the reactions thereof required somewhat higher temperature and longer reaction period.
-
-
-
-
19
-
-
33344460037
-
-
note
-
3): δ = 1.26 (d, 6 H, (Diagram presented).
-
-
-
-
20
-
-
33344471533
-
-
note
-
TBDPS ether, when employed as the protecting group of a phenolic hydroxy 1 of methyl 2,6-dihydroxybenzoate, did not survive in the reaction. Thus, we opted for the allyl ether instead.
-
-
-
|