-
1
-
-
0030413554
-
Polynomial time approximation schemes for euclidean TSP and other geometric problems
-
[A96]
-
[A96] S. Arora, Polynomial Time Approximation Schemes for Euclidean TSP and other Geometric Problems, Proc. 37th IEEE FOCS (1996), pp. 2-11.
-
(1996)
Proc. 37th IEEE FOCS
, pp. 2-11
-
-
Arora, S.1
-
2
-
-
84938093121
-
1.375-approximation algorithm for sorting by reversals
-
[BHK02], Proc. 10th ESA (2002), Springer
-
[BHK02] P. Berman, S. Hannenhalli and M. Karpinski, 1.375-Approximation Algorithm for Sorting by Reversals, Proc. 10th ESA (2002), LNCS 2461, Springer, 2002, pp. 200-210.
-
(2002)
LNCS
, vol.2461
, pp. 200-210
-
-
Berman, P.1
Hannenhalli, S.2
Karpinski, M.3
-
3
-
-
26844548426
-
An improved approximation for TSP with distances one and two
-
[BR0S], Proc. 15th FCT (2005), Springer
-
[BR0S] M. Bläser and L. Shankar Ram, An Improved Approximation for TSP with Distances One and Two, Proc. 15th FCT (2005), LNCS 3623, Springer, 2005, pp. 504-515.
-
(2005)
LNCS
, vol.3623
, pp. 504-515
-
-
Bläser, M.1
Shankar Ram, L.2
-
4
-
-
84943244356
-
Computing cycle covers without short cycles
-
[BS01], Proc. 9th ESA (2001), Springer
-
[BS01] M. Bläser and B. Seifert, Computing Cycle Covers without Short Cycles, Proc. 9th ESA (2001), LNCS 2161, Springer, 2001, pp. 368-379.
-
(2001)
LNCS
, vol.2161
, pp. 368-379
-
-
Bläser, M.1
Seifert, B.2
-
5
-
-
0003522094
-
Worst-case analysis of a new heuristic for the traveling salesman problem
-
[C76], GSIA, Carnegie-Mellon University
-
[C76] N. Christofides, Worst-Case Analysis of a New Heuristic for the Traveling Salesman Problem, Technical Report, GSIA, Carnegie-Mellon University, 1976.
-
(1976)
Technical Report
-
-
Christofides, N.1
-
6
-
-
84879532416
-
Approximation hardness of TSP with bounded metrics
-
[EK01], Proc. 28th ICALP (2001), Springer
-
[EK01] L. Engebretsen and M. Karpinski, Approximation Hardness of TSP with Bounded Metrics, Proc. 28th ICALP (2001), LNCS 2076, Springer, 2001, pp. 201-212;
-
(2001)
LNCS
, vol.2076
, pp. 201-212
-
-
Engebretsen, L.1
Karpinski, M.2
-
7
-
-
33244464446
-
-
journal version to appear
-
journal version to appear in JCSS.
-
JCSS
-
-
-
8
-
-
0033617071
-
On the approximation hardness of dense TSP and other path problems
-
[FK99]
-
[FK99] W. Fernandez de la Vega and M. Karpinski, On the Approximation Hardness of Dense TSP and other Path Problems, Information Processing Letters 70 (1999), pp. 53-55.
-
(1999)
Information Processing Letters
, vol.70
, pp. 53-55
-
-
Fernandez De La Vega, W.1
Karpinski, M.2
-
10
-
-
0003898182
-
-
[K72], R. E. Miller and J. W. Thatcher (Eds.), Plenum, New York
-
[K72] R. M. Karp, Reducibility among Combinatorial Problems, in R. E. Miller and J. W. Thatcher (Eds.), Plenum, New York, 1972.
-
(1972)
Reducibility among Combinatorial Problems
-
-
Karp, R.M.1
-
11
-
-
0001805669
-
The traveling salesman problem with distances one and two
-
[PY93]
-
[PY93] C. H. Papadimitriou and M. Yannakakis, The Traveling Salesman Problem With Distances One and Two, Math. Oper. Res. 18 (1993), pp. 1-11.
-
(1993)
Math. Oper. Res.
, vol.18
, pp. 1-11
-
-
Papadimitriou, C.H.1
Yannakakis, M.2
-
12
-
-
0030701251
-
When hamming meets euclid: The approximability of geometric TSP and MST
-
[T97]
-
[T97] L. Trevisan, When Hamming Meets Euclid: The Approximability of Geometric TSP and MST, Proc. 29th ACM STOC (1997), pp. 21-29.
-
(1997)
Proc. 29th ACM STOC
, pp. 21-29
-
-
Trevisan, L.1
-
13
-
-
0006417924
-
An approximation algorithm for the asymmetric travelling salesman problem with distances one and two
-
[V92]
-
[V92] S. Vishwanathan, An Approximation Algorithm for the Asymmetric Travelling Salesman Problem with Distances One and Two, Information Processing Letters 44 (1992), pp. 297-302.
-
(1992)
Information Processing Letters
, vol.44
, pp. 297-302
-
-
Vishwanathan, S.1
|