메뉴 건너뛰기




Volumn 39, Issue 5, 2006, Pages 776-788

A partitional clustering algorithm validated by a clustering tendency index based on graph theory

Author keywords

Clustering algorithms; Clustering validity; Unsupervised learning

Indexed keywords

CLUSTERING ALGORITHM; CLUSTERING VALIDITY; UNSUPERVISED LEARNING;

EID: 33244485485     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2005.10.027     Document Type: Article
Times cited : (26)

References (25)
  • 2
    • 0041490380 scopus 로고    scopus 로고
    • Clustering validation
    • C. Hayashi Word Scientific Publishers River Edge*et al.
    • A.D. Gordon Clustering validation C. Hayashi Data Science, Classification, and Related Methods 1998 Word Scientific Publishers River Edge 22 39
    • (1998) Data Science, Classification, and Related Methods , pp. 22-39
    • Gordon, A.D.1
  • 3
    • 0004241258 scopus 로고    scopus 로고
    • second ed. Chapman & Hall/CRC London
    • A.D. Gordon Classification second ed. 1999 Chapman & Hall/CRC London
    • (1999) Classification
    • Gordon, A.D.1
  • 6
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • L.M. Le Cam, J. Neyman(Eds.) University of California Press, Berkeley, CA
    • J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkely Symposium on Mathematical Statistics and Probability, L.M. Le Cam, J. Neyman(Eds.), vol. 1, University of California Press, Berkeley, CA, 1967, pp. 281-297.
    • (1967) Proceedings of the Fifth Berkely Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 7
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • J. Bocca, M. Jarke, C. Zaniolo (Eds.), Morgan Kaufmann Publishers, Los Altos, CA
    • R.T. Ng, J. Han, Efficient and effective clustering methods for spatial data mining, in: Proceedings of the 20th International Conference on Very Large Data Bases, J. Bocca, M. Jarke, C. Zaniolo (Eds.), Morgan Kaufmann Publishers, Los Altos, CA, 1994, pp. 144-155.
    • (1994) Proceedings of the 20th International Conference on Very Large Data Bases , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 8
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values, in: Data Mining, Knowledge Discovery 2 (3) (1998) 283-304.
    • (1998) Data Mining, Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 11
    • 0002607026 scopus 로고
    • Bayesian classification autoclass: Theory and results
    • Usama M. Fayyed Gregory Piatetsky-Shapiro Padhraic Smyth Ramasamy Uthurusamy The AAAI Press New York
    • P. Cheeseman, and J. Stutz Bayesian classification autoclass: theory and results Usama M. Fayyed Gregory Piatetsky-Shapiro Padhraic Smyth Ramasamy Uthurusamy Advances in Knowledge Discovery and Data Mining 1995 The AAAI Press New York 153 180
    • (1995) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 12
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. Milligan, and M. Cooper An examination of procedures for determining the number of clusters in a data set Psychometrika 50 2 1985 159 179
    • (1985) Psychometrika , vol.50 , Issue.2 , pp. 159-179
    • Milligan, G.1    Cooper, M.2
  • 13
    • 33244479077 scopus 로고    scopus 로고
    • Validation of very large data sets clustering by means of a nonparametric linear criterion
    • Classification, clustering and data analysis K. Jajuga, A. Sokolowski, H.H. Bock (Eds.), Springer, Berlin, Heidelberg
    • I. Lerman, J. Costa, H.B. Silva, Validation of very large data sets clustering by means of a nonparametric linear criterion, in: Classification, clustering and data analysis, Recent Advances and Applications, K. Jajuga, A. Sokolowski, H.H. Bock (Eds.), Springer, Berlin, Heidelberg, 2002, pp. 147-157.
    • (2002) Recent Advances and Applications , pp. 147-157
    • Lerman, I.1    Costa, J.2    Silva, H.B.3
  • 15
    • 0003482056 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Department of Statistics, University of Washington
    • C. Fraley, A.E. Raftery, Model-based clustering, discriminant analysis, and density estimation, Technical Report number 380, Department of Statistics, University of Washington, 2000.
    • (2000) Technical Report Number 380 , vol.380
    • Fraley, C.1    Raftery, A.E.2
  • 16
    • 2142857567 scopus 로고    scopus 로고
    • Algorithms for model-based gaussian hierarchical clustering
    • Department of Statistics, University of Washington
    • C. Fraley, Algorithms for model-based gaussian hierarchical clustering, Technical Report number 311, Department of Statistics, University of Washington, 1996.
    • (1996) Technical Report Number 311 , vol.311
    • Fraley, C.1
  • 17
    • 0000272920 scopus 로고
    • An algorithm for generating artificial test clusters
    • G. Milligan An algorithm for generating artificial test clusters Psychometrika 50 1 1981 123 127
    • (1981) Psychometrika , vol.50 , Issue.1 , pp. 123-127
    • Milligan, G.1
  • 18
    • 33244469160 scopus 로고
    • Admissible discriminant, Programs in mathematical sciences
    • University of Texas at Dallas
    • L. Fisher, J. Van Ness, Admissible discriminant, Programs in mathematical sciences, Technical Report number 5, University of Texas at Dallas, 1971.
    • (1971) Technical Report Number 5 , vol.5
    • Fisher, L.1    Van Ness, J.2
  • 19
    • 0001925540 scopus 로고
    • Admissible clustering procedures
    • L. Fisher, and J. Van Ness Admissible clustering procedures Biometrika 58 1971 91 104
    • (1971) Biometrika , vol.58 , pp. 91-104
    • Fisher, L.1    Van Ness, J.2
  • 20
    • 33244478189 scopus 로고    scopus 로고
    • Recent results in clustering admissibility
    • H. Bacelar-Nicolau F. Costa Nicolau J. Janssen Instituto Nacional de Estatistica Lisboa, Portugal
    • J.V. Ness Recent results in clustering admissibility H. Bacelar-Nicolau F. Costa Nicolau J. Janssen Applied Stochastic Models and Data Analysis 1999 Instituto Nacional de Estatistica Lisboa, Portugal 19 29
    • (1999) Applied Stochastic Models and Data Analysis , pp. 19-29
    • Ness, J.V.1
  • 22
    • 84871508443 scopus 로고
    • Complete-link cluster analysis by graph coloring
    • P. Hansen, and M. Delattre Complete-link cluster analysis by graph coloring J. Am. Stat. Assoc. 16 362 1978 397 403
    • (1978) J. Am. Stat. Assoc. , vol.16 , Issue.362 , pp. 397-403
    • Hansen, P.1    Delattre, M.2
  • 24
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. Rand Objective criteria for the evaluation of clustering methods J. Am. Stat. Assoc. 66 336 1971 846 850
    • (1971) J. Am. Stat. Assoc. , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.