-
2
-
-
0042274163
-
Independence numbers of graphs -an extension of the Konig-Egerváry theorem
-
R. W. Deming, Independence numbers of graphs -an extension of the Konig-Egerváry theorem, Discrete Mathematics 27 (1979) 23-33.
-
(1979)
Discrete Mathematics
, vol.27
, pp. 23-33
-
-
Deming, R.W.1
-
3
-
-
0009819630
-
Matrixok kombinatorius tulajdonságairól
-
Egerváry Jeno [=Eugene], [in Hungarian]
-
Egerváry Jeno [=Eugene], Matrixok kombinatorius tulajdonságairól, [in Hungarian: On combinatorial properties of matrices] Matematikai és Fizikai Lapok, 38 (1931) 16-28.
-
(1931)
Matematikai és Fizikai Lapok
, vol.38
, pp. 16-28
-
-
-
5
-
-
0001025791
-
Split graphs
-
(F. Hoffmann et al., eds.), Lousiana State Univ., Baton Rouge, Louisiana
-
S. Földes, P.L. Hammer, Split Graphs, Proc. 8th Southeastern Conf. on Combinatorics, Graph Theory and Computing (F. Hoffmann et al., eds.), Lousiana State Univ., Baton Rouge, Louisiana, 1977, pp 311-315.
-
(1977)
Proc. 8th Southeastern Conf. on Combinatorics, Graph Theory and Computing
, pp. 311-315
-
-
Földes, S.1
Hammer, P.L.2
-
6
-
-
38249024857
-
Konig-egervary graphs, 2-bicritical graphs and fractional matchings
-
Jean-Marie Bourjolly and William R. Pulleyblank, Konig-Egervary Graphs, 2-Bicritical Graphs and Fractional Matchings, DAM 24 (1989), pp 63-82.
-
(1989)
DAM
, vol.24
, pp. 63-82
-
-
Bourjolly, J.-M.1
Pulleyblank, W.R.2
-
7
-
-
0042514092
-
An efficient solvable graph partition problem to which many problems are reducible
-
F. Gavril, An efficient solvable graph partition problem to which many problems are reducible, Information Processing Letters 45, 1993, pp. 285-290.
-
(1993)
Information Processing Letters
, vol.45
, pp. 285-290
-
-
Gavril, F.1
-
8
-
-
0003037529
-
Reducibility among combinatorial problems
-
R. E. Miller and J. W. Thatcher, eds. (Plenum, New York)
-
R. M. Karp, Reducibility among combinatorial problems, R. E. Miller and J. W. Thatcher, eds. Complexity of Computer Computations (Plenum, New York, 1972) pp. 85-104.
-
(1972)
Complexity of Computer Computations
, pp. 85-104
-
-
Karp, R.M.1
-
9
-
-
0001155537
-
Gráphok és mátrixok
-
[in Hungarian]
-
D. König, Gráphok és mátrixok, [in Hungarian: Graphs and matrices], Matematikai es Fizikai Lapok, 38 (1931) 116-119.
-
(1931)
Matematikai es Fizikai Lapok
, vol.38
, pp. 116-119
-
-
König, D.1
-
10
-
-
80053090985
-
4, or a finite basis characterization of non-knig-egerváry graphs
-
IBM-Israel Scientific Center
-
4, or a Finite Basis Characterization of Non-Knig-Egerváry Graphs, Technical Report 115, IBM-Israel Scientific Center, 1982.
-
(1982)
Technical Report
, vol.115
-
-
Korach, E.1
-
12
-
-
0000157130
-
Sur le probleme des courbes gauches en topologie
-
K. Kuratowski, Sur le probleme des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.
-
(1930)
Fund. Math.
, vol.15
, pp. 271-283
-
-
Kuratowski, K.1
-
14
-
-
51249185536
-
Ear-decompositions of matching-covered graphs
-
L. Lovász, Ear-decompositions of matching-covered graphs, Combinatorica 3 (1983), pp. 105-118.
-
(1983)
Combinatorica
, vol.3
, pp. 105-118
-
-
Lovász, L.1
-
15
-
-
9144239509
-
Graph minors XX: Wagner's conjecture
-
N. Roberston and P.D. Seymour, Graph minors XX: Wagner's conjecture, J. Combinatorial Theory, Ser. B, 92 (2004), 325-357.
-
(2004)
J. Combinatorial Theory, Ser. B
, vol.92
, pp. 325-357
-
-
Roberston, N.1
Seymour, P.D.2
-
16
-
-
51249176754
-
Disjoint homotopic paths and trees in a planar grap
-
Springer-Verlag New York Inc.
-
A. Schrijver, Disjoint Homotopic Paths and Trees in a Planar Grap, Discrete Computational Geometry 6, Springer-Verlag New York Inc., 1991, pp. 527-574.
-
(1991)
Discrete Computational Geometry
, vol.6
, pp. 527-574
-
-
Schrijver, A.1
-
17
-
-
20944443623
-
A characterization of the graphs in which the transversal number equals the matching number
-
F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number, Journal of Combinatorial Theory Series B 27 (1979) 228-229.
-
(1979)
Journal of Combinatorial Theory Series B
, vol.27
, pp. 228-229
-
-
Sterboul, F.1
-
18
-
-
33845337775
-
Uber eine Eigenschaft der ebene Komplexe
-
K. Wagner. Uber eine Eigenschaft der ebene Komplexe, Math. Anna. 114 (1937), 570-590.
-
(1937)
Math. Anna.
, vol.114
, pp. 570-590
-
-
Wagner, K.1
|