메뉴 건너뛰기




Volumn 52, Issue 6, 2005, Pages 3026-3034

A smart software sensor for feedwater flow measurement monitoring

Author keywords

Feedwater measurement; Fuzzy model; Measurement monitoring; Smart software sensor; Subtractive clustering

Indexed keywords

COMPUTER SOFTWARE; FEEDWATER ANALYSIS; FLOW MEASUREMENT; FLOWMETERS; FUZZY SETS; GENETIC ALGORITHMS; LEAST SQUARES APPROXIMATIONS; NUCLEAR POWER PLANTS; PRESSURIZED WATER REACTORS;

EID: 33144479703     PISSN: 00189499     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNS.2005.861418     Document Type: Conference Paper
Times cited : (16)

References (23)
  • 1
    • 0028461971 scopus 로고
    • Monitoring feedwater flow rate and component thermal performance of pressurized water reactors by means of artificial neural networks
    • Jul.
    • K. Kavaklioglu and B. R. Upadhyaya, "Monitoring feedwater flow rate and component thermal performance of pressurized water reactors by means of artificial neural networks," Nucl. Technol., vol. 107, pp. 112-123, Jul. 1994.
    • (1994) Nucl. Technol. , vol.107 , pp. 112-123
    • Kavaklioglu, K.1    Upadhyaya, B.R.2
  • 2
    • 1642284462 scopus 로고    scopus 로고
    • Feedwater flowrate estimation based on the two-step de-noising using the wavelet analysis and an autoassociative neural network
    • Apr.
    • G. Heo, S. S. Choi, and S. H. Chang, "Feedwater flowrate estimation based on the two-step de-noising using the wavelet analysis and an autoassociative neural network," J. Kor. Nucl. Soc., vol. 31, no. 2, pp. 192-201, Apr. 1999.
    • (1999) J. Kor. Nucl. Soc. , vol.31 , Issue.2 , pp. 192-201
    • Heo, G.1    Choi, S.S.2    Chang, S.H.3
  • 3
    • 33748346947 scopus 로고    scopus 로고
    • Regularization of feedwater flow rate evaluation for venturi meter fouling problem in nuclear power plants
    • San Francisco, CA, Oct.
    • A. V. Gribok, I. Attieh, J. W. Hines, and R. E. Uhrig, "Regularization of feedwater flow rate evaluation for venturi meter fouling problem in nuclear power plants," presented at the NURETH-9, San Francisco, CA, Oct. 1999.
    • (1999) NURETH-9
    • Gribok, A.V.1    Attieh, I.2    Hines, J.W.3    Uhrig, R.E.4
  • 4
    • 20344366067 scopus 로고    scopus 로고
    • Design of a software sensor for feedwater flow measurement using a fuzzy inference system
    • Jun.
    • M. G. Na, S. H. Shin, and D. W. Jung, "Design of a software sensor for feedwater flow measurement using a fuzzy inference system," Nucl. Technol., vol. 150, no. 3, pp. 293-302, Jun. 2005.
    • (2005) Nucl. Technol. , vol.150 , Issue.3 , pp. 293-302
    • Na, M.G.1    Shin, S.H.2    Jung, D.W.3
  • 5
    • 0034847598 scopus 로고    scopus 로고
    • A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process
    • D.-J. Choi and H. Park, "A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process," Water Res., vol. 35, no. 16, pp. 3959-3967, 2001.
    • (2001) Water Res. , vol.35 , Issue.16 , pp. 3959-3967
    • Choi, D.-J.1    Park, H.2
  • 6
    • 0030471518 scopus 로고    scopus 로고
    • Software sensor based control of exothermic batch reactors
    • N. Régnier, G. Defaye, L. Caralp, and C. Vidal, "Software sensor based control of exothermic batch reactors," Chem. Eng. Sci., vol. 51, no. 23, pp. 5125-5136, 1996.
    • (1996) Chem. Eng. Sci. , vol.51 , Issue.23 , pp. 5125-5136
    • Régnier, N.1    Defaye, G.2    Caralp, L.3    Vidal, C.4
  • 7
    • 0030980424 scopus 로고    scopus 로고
    • Neural networks as 'software sensors' in enzyme production
    • S. Linko, J. Luopa, and Y.-H. Zhu, "Neural networks as 'software sensors' in enzyme production," J. Biotechnol., vol. 52, no. 3, pp. 257-266, 1997.
    • (1997) J. Biotechnol. , vol.52 , Issue.3 , pp. 257-266
    • Linko, S.1    Luopa, J.2    Zhu, Y.-H.3
  • 8
    • 2542508565 scopus 로고    scopus 로고
    • Software sensors in bioprocess engineering
    • A. Chéruy, "Software sensors in bioprocess engineering, " J. Biotechnol., vol. 52, no. 3, pp. 193-199, 1997.
    • (1997) J. Biotechnol. , vol.52 , Issue.3 , pp. 193-199
    • Chéruy, A.1
  • 10
    • 33144467310 scopus 로고    scopus 로고
    • The elements of uncertainty in feedwater flow measurements with three types of instruments
    • Washington, DC, Nov.
    • J. Regan and H. Estrada, "The elements of uncertainty in feedwater flow measurements with three types of instruments," presented at the NPIC and HMIT 2000, Washington, DC, Nov. 2000.
    • (2000) NPIC and HMIT 2000
    • Regan, J.1    Estrada, H.2
  • 11
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S. L. Chiu, "Fuzzy model identification based on cluster estimation," J. Intell. Fuzzy Syst., vol. 2, pp. 267-278, 1994.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 12
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a Fuzzy logic controller
    • E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a Fuzzy logic controller," Int. J. Man-Mach. Studies, vol. 7, pp. 1-13, 1975.
    • (1975) Int. J. Man-Mach. Studies , vol.7 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 13
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Jan./Feb.
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst. Man, Cybern., vol. SMC-1, no. 1, pp. 116-132, Jan./Feb. 1985.
    • (1985) IEEE Trans. Syst. Man, Cybern. , vol.SMC-1 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 14
    • 0042864639 scopus 로고    scopus 로고
    • Fuzzy model predictive control of nonlinear processes using genetic algorithms
    • H. Sarimveis and G. Bafas, "Fuzzy model predictive control of nonlinear processes using genetic algorithms," Fuzzy Sets Syst., vol. 139, pp. 59-80, 2003.
    • (2003) Fuzzy Sets Syst. , vol.139 , pp. 59-80
    • Sarimveis, H.1    Bafas, G.2
  • 17
    • 4544289385 scopus 로고    scopus 로고
    • Improving performance in pulse radar detection using bayesian regularization for neural network training
    • P. Kumar, S. N. Merchant, and U. B. Desai, "Improving performance in pulse radar detection using bayesian regularization for neural network training," Dig. Signal Process., vol. 14, pp. 438-448, 2004.
    • (2004) Dig. Signal Process , vol.14 , pp. 438-448
    • Kumar, P.1    Merchant, S.N.2    Desai, U.B.3
  • 18
    • 4544295244 scopus 로고    scopus 로고
    • Evolutionary neural network modeling for software cumulative failure time prediction
    • L. Tian and A. Noore, "Evolutionary neural network modeling for software cumulative failure time prediction," Reliab. Eng. Syst. Safety, vol. 87, pp. 45-51, 2005.
    • (2005) Reliab. Eng. Syst. Safety , vol.87 , pp. 45-51
    • Tian, L.1    Noore, A.2
  • 20
    • 0017009562 scopus 로고
    • A sequential failure detection technique and its application
    • T.-T. Chien and M. B. Adams, "A sequential failure detection technique and its application," IEEE Trans. Autom. Contr., vol. 21, pp. 750-757, 1976.
    • (1976) IEEE Trans. Autom. Contr. , vol.21 , pp. 750-757
    • Chien, T.-T.1    Adams, M.B.2
  • 21
    • 0033216692 scopus 로고    scopus 로고
    • Combining conceptual clustering and principal component analysis for state space based process montoring
    • X. Z. Wang and R. F. Li, "Combining conceptual clustering and principal component analysis for state space based process montoring," Ind. Eng. Chem. Res., vol. 38, no. 11, pp. 4345-4358, 1999.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , Issue.11 , pp. 4345-4358
    • Wang, X.Z.1    Li, R.F.2
  • 22
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • J. Chen and J. Liu, "Mixture principal component analysis models for process monitoring," Ind. Eng. Chem. Res., vol. 38, no. 4, pp. 1478-1488, 1999.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , Issue.4 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 23
    • 20344406432 scopus 로고    scopus 로고
    • An input feature selection method applied to fuzzy neural networks for signal estimation
    • Oct.
    • M. G. Na and Y. R. Sim, "An input feature selection method applied to fuzzy neural networks for signal estimation," J. Kor. Nucl. Soc., vol. 33, no. 5, pp. 457-467, Oct. 2001.
    • (2001) J. Kor. Nucl. Soc. , vol.33 , Issue.5 , pp. 457-467
    • Na, M.G.1    Sim, Y.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.