메뉴 건너뛰기




Volumn 27, Issue 1, 2006, Pages 87-102

Nonlinear discriminant analysis using kernel functions and the generalized singular value decomposition

Author keywords

Dimension reduction; Generalized singular value decomposition; Kernel functions; Linear discriminant analysis; Nonlinear discriminant analysis

Indexed keywords

DIMENSION REDUCTION; GENERALIZED SINGULAR VALUE DECOMPOSITION; KERNEL FUNCTIONS; LINEAR DISCRIMINANT ANALYSIS; NONLINEAR DISCRIMINANT ANALYSIS;

EID: 33144465195     PISSN: 08954798     EISSN: 10957162     Source Type: Journal    
DOI: 10.1137/S0895479804442334     Document Type: Article
Times cited : (61)

References (19)
  • 1
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using a kernel approach
    • G. BAUDAT AND F. ANOUAR, Generalized discriminant analysis using a kernel approach, Neural Comput., 12 (2000), pp. 2385-2404.
    • (2000) Neural Comput. , vol.12 , pp. 2385-2404
    • Baudat, G.1    Anouar, F.2
  • 2
    • 0036195207 scopus 로고    scopus 로고
    • Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm
    • S. BILLINGS AND K. LEE, Nonlinear Fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm, Neural Networks, 15 (2002), pp. 263-270.
    • (2002) Neural Networks , vol.15 , pp. 263-270
    • Billings, S.1    Lee, K.2
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. BURGES, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov., 2 (1998), pp. 121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.1
  • 4
    • 0034300875 scopus 로고    scopus 로고
    • A new LDA-based face recognition system which can solve the small sample size problem
    • L. CHEN, H. LIAO, M. KO, J. LIN, AND G. YU, A new LDA-based face recognition system which can solve the small sample size problem, Pattern Recognition, 33 (2000), pp. 1713-1726.
    • (2000) Pattern Recognition , vol.33 , pp. 1713-1726
    • Chen, L.1    Liao, H.2    Ko, M.3    Lin, J.4    Yu, G.5
  • 8
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • J. FRIEDMAN, Regularized discriminant analysis, J. Amer. Statist. Assoc., 84 (1989), pp. 165-175.
    • (1989) J. Amer. Statist. Assoc. , vol.84 , pp. 165-175
    • Friedman, J.1
  • 10
    • 1342310014 scopus 로고    scopus 로고
    • Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition
    • P. HOWLAND, M. JEON, AND H. PARK, Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 165-179.
    • (2003) SIAM J. Matrix Anal. Appl. , vol.25 , pp. 165-179
    • Howland, P.1    Jeon, M.2    Park, H.3
  • 12
    • 0033337021 scopus 로고    scopus 로고
    • Fisher discriminant analysis with kernels
    • Y. H. Hu, J. Larsen, E. Wilson, and S. Douglas, eds., IEEE, Piscataway, NJ
    • S. MIKA, G. RÄTSCH, J. WESTON, B. SCHÖLKOPF, AND K.-R. MÜLLER, Fisher discriminant analysis with kernels, in Neural Networks for Signal Processing IX, Y. H. Hu, J. Larsen, E. Wilson, and S. Douglas, eds., IEEE, Piscataway, NJ, 1999, pp. 41-48.
    • (1999) Neural Networks for Signal Processing IX , pp. 41-48
    • Mika, S.1    Rätsch, G.2    Weston, J.3    Schölkopf, B.4    Müller, K.-R.5
  • 14
    • 33144485326 scopus 로고    scopus 로고
    • A comparison of generalized LDA algorithms for undersampled problems
    • Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN
    • C. H. PARK AND H. PARK, A Comparison of Generalized LDA Algorithms for Undersampled Problems, Tech, rep. 03-048, Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, 2003.
    • (2003) Tech, Rep. , vol.3 , Issue.48
    • Park, C.H.1    Park, H.2
  • 16
    • 84898984897 scopus 로고    scopus 로고
    • Nonlinear discriminant analysis using kernel functions
    • V. ROTH AND V. STEINHAGE, Nonlinear discriminant analysis using kernel functions, Adv. Neural Inf. Process. Syst., 12 (2000), pp. 568-574.
    • (2000) Adv. Neural Inf. Process. Syst. , vol.12 , pp. 568-574
    • Roth, V.1    Steinhage, V.2
  • 18
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. SCHÖLKOPF, A. SMOLA, AND K.-R. MÜLLER, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10 (1998), pp. 1299-1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 19
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data with application to face recognition
    • H. YU AND J. YANG, A direct LDA algorithm for high-dimensional data with application to face recognition, Pattern Recognition, 34 (2001), pp. 2067-2070.
    • (2001) Pattern Recognition , vol.34 , pp. 2067-2070
    • Yu, H.1    Yang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.