메뉴 건너뛰기




Volumn 58, Issue 1, 2006, Pages 64-92

Multiplicity results for nonlinear Neumann problems

Author keywords

Clarke subdifferential; Locally lipschitz function; Neumann problem; Nonsmooth critical point theory; Nonsmooth symmetric mountain pass theorem; P Laplacian; Second deformation theorem; Strong resonance

Indexed keywords


EID: 32944470126     PISSN: 0008414X     EISSN: None     Source Type: Journal    
DOI: 10.4153/CJM-2006-004-6     Document Type: Article
Times cited : (24)

References (18)
  • 2
    • 0009179578 scopus 로고
    • Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity
    • P. Bartolo, V. Benci and D. Fortunato, Abstract Critical Point Theorems and Applications to some Nonlinear Problems with "Strong" Resonance at Infinity. Nonlinear Anal. 7(1983), 981-1012.
    • (1983) Nonlinear Anal. , vol.7 , pp. 981-1012
    • Bartolo, P.1    Benci, V.2    Fortunato, D.3
  • 3
    • 0034300779 scopus 로고    scopus 로고
    • Existence of multiple solutions of critical quasilinear elliptic neumann problems
    • P. Binding, P. Drabek and Y. X. Huang, Existence of Multiple Solutions of Critical Quasilinear Elliptic Neumann Problems. Nonlinear Anal. 42(2000), 613-629.
    • (2000) Nonlinear Anal. , vol.42 , pp. 613-629
    • Binding, P.1    Drabek, P.2    Huang, Y.X.3
  • 4
    • 0003150212 scopus 로고
    • A Green's formula for quasilinear elliptic operators
    • E. Casas and L. A. Fernandez, A Green's Formula for Quasilinear Elliptic Operators. J. Math. Anal. Appl. 142(1989), 62-73.
    • (1989) J. Math. Anal. Appl. , vol.142 , pp. 62-73
    • Casas, E.1    Fernandez, L.A.2
  • 5
    • 0000993645 scopus 로고
    • Variational methods for nondijferentiable functional and their applications to partial differential equations
    • K. C. Chang, Variational Methods for Nondijferentiable Functional and their Applications to Partial Differential Equations. J. Math. Anal. Appl. 80(1981), 102-129.
    • (1981) J. Math. Anal. Appl. , vol.80 , pp. 102-129
    • Chang, K.C.1
  • 10
    • 0037286244 scopus 로고    scopus 로고
    • Multiplicity results for a Neumann Problem Involving the p-Laplacian
    • F. Faraci, Multiplicity results for a Neumann Problem Involving the p-Laplacian. J. Math. Anal. Appl. 277(2003), 180-189.
    • (2003) J. Math. Anal. Appl. , vol.277 , pp. 180-189
    • Faraci, F.1
  • 11
    • 0013380240 scopus 로고
    • On multiple solutions of a nonlinear Neumann problem
    • G. A. Harris, On Multiple Solutions of a Nonlinear Neumann Problem. J. Differential Equations 95(1992), 105-129.
    • (1992) J. Differential Equations , vol.95 , pp. 105-129
    • Harris, G.A.1
  • 12
    • 0013331353 scopus 로고
    • Multiplicity of solutions of nonlinear boundary value problems
    • D. C. Hart, A. C. Lazer and P. J. McKenna, Multiplicity of Solutions of Nonlinear Boundary Value Problems. SIAM J. Math. Anal. 17(1986), 1332-1338.
    • (1986) SIAM J. Math. Anal. , vol.17 , pp. 1332-1338
    • Hart, D.C.1    Lazer, A.C.2    McKenna, P.J.3
  • 14
    • 0008300935 scopus 로고
    • Noordhoff International Publishing, Leyden, The Netherlands
    • O. John, A. Kufner and S. Fučik, Functional Spaces. Noordhoff International Publishing, Leyden, The Netherlands, 1977.
    • (1977) Functional Spaces
    • John, O.1    Kufner, A.2    Fučik, S.3
  • 15
    • 84972527638 scopus 로고
    • Pseudomonotone operators and nonlinear elliptic boundary value problems
    • N. Kenmochi, Pseudomonotone Operators and Nonlinear Elliptic Boundary Value Problems. J. Math. Soc. Japan 27(1975), 121-149.
    • (1975) J. Math. Soc. Japan , vol.27 , pp. 121-149
    • Kenmochi, N.1
  • 16
    • 0040736083 scopus 로고    scopus 로고
    • Nonsmooth critical point theory and nonlinear elliptic equations at resonance
    • N. Kourogenis and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Elliptic Equations at Resonance. J. Austral. Math. Soc. Ser. A 69(2000), 245-271.
    • (2000) J. Austral. Math. Soc. Ser. A , vol.69 , pp. 245-271
    • Kourogenis, N.1    Papageorgiou, N.S.2
  • 18
    • 0002349602 scopus 로고
    • Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems
    • A. Szulkin, Minimax Principles for Lower Semicontinuous Functions and Applications to Nonlinear Boundary Value Problems. Ann. Inst. H. Poincaré. Anal. Non Linéaire 3(1986), 77-109.
    • (1986) Ann. Inst. H. Poincaré. Anal. Non Linéaire , vol.3 , pp. 77-109
    • Szulkin, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.