-
1
-
-
0034381734
-
High-dimensional polynomial interpolation on sparse grids
-
V. BARTHELMANN, E. NOVAK, K. RITTER (1999): High-dimensional polynomial interpolation on sparse grids. Adv. Comput. Math., 12:273-288.
-
(1999)
Adv. Comput. Math.
, vol.12
, pp. 273-288
-
-
Barthelmann, V.1
Novak, E.2
Ritter, K.3
-
2
-
-
0039496348
-
About approximation numbers in function spaces
-
A. M. CAETANO (1998): About approximation numbers in function spaces. J. Approx. Theory, 94:383-395.
-
(1998)
J. Approx. Theory
, vol.94
, pp. 383-395
-
-
Caetano, A.M.1
-
5
-
-
0242510921
-
Intrinsic characterizations of Besov spaces on Lipschitz domains
-
S. DISPA (2003): Intrinsic characterizations of Besov spaces on Lipschitz domains. Math. Nachr., 260:21-33.
-
(2003)
Math. Nachr.
, vol.260
, pp. 21-33
-
-
Dispa, S.1
-
7
-
-
18144381929
-
Approximation of anisotropic Besov classes of functions by standard information
-
G. FANG, F. J. HICKERNELL, H. LI (2005): Approximation of anisotropic Besov classes of functions by standard information. J. Complexity, 21:294-313.
-
(2005)
J. Complexity
, vol.21
, pp. 294-313
-
-
Fang, G.1
Hickernell, F.J.2
Li, H.3
-
8
-
-
38249008431
-
Lower bounds for the complexity of Monte Carlo function approximation
-
S. HEINRICH (1992): Lower bounds for the complexity of Monte Carlo function approximation. J. Complexity, 8:277-300.
-
(1992)
J. Complexity
, vol.8
, pp. 277-300
-
-
Heinrich, S.1
-
9
-
-
0001015105
-
Random approximation in numerical analysis
-
(Bierstedt, K. D. et al., eds.). Proc. Essen Conf. 1991. New York: Dekker
-
S. HEINRICH (1994): Random approximation in numerical analysis. In: Functional Analysis (Bierstedt, K. D. et al., eds.). Proc. Essen Conf. 1991. New York: Dekker, pp. 123-171.
-
(1994)
Functional Analysis
, pp. 123-171
-
-
Heinrich, S.1
-
10
-
-
1242277383
-
Quantum approximation II: Sobolev embeddings
-
S. HEINRICH (2004): Quantum approximation II: Sobolev embeddings. J. Complexity, 20:27-45.
-
(2004)
J. Complexity
, vol.20
, pp. 27-45
-
-
Heinrich, S.1
-
11
-
-
22044433640
-
The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points
-
S. N. KUDRYAVTSEV (1998): The best accuracy of reconstruction of finitely smooth functions from their values at a given number of points. Izv. Math., 62(1): 19-53.
-
(1998)
Izv. Math.
, vol.62
, Issue.1
, pp. 19-53
-
-
Kudryavtsev, S.N.1
-
12
-
-
0003211763
-
Deterministic and stochastic error bounds in mumerical analysis
-
Berlin: Springer-Verlag
-
E. NOVAK (1988): Deterministic and Stochastic Error Bounds in Mumerical Analysis. Lecture Notes in Mathematics, Vol. 1349. Berlin: Springer-Verlag.
-
(1988)
Lecture Notes in Mathematics
, vol.1349
-
-
Novak, E.1
-
13
-
-
0040036758
-
On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains
-
V. S. RYCHKOV (1999): On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains. J. London Math. Soc., 60:237-257.
-
(1999)
J. London Math. Soc.
, vol.60
, pp. 237-257
-
-
Rychkov, V.S.1
-
21
-
-
0042420166
-
Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers
-
H. TRIEBEL (2002): Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Comput., 15:475-524.
-
(2002)
Rev. Mat. Comput.
, vol.15
, pp. 475-524
-
-
Triebel, H.1
-
22
-
-
11144293601
-
Finite order weights imply tractability of linear multivariate problems
-
G. W. WASILKOWSKI, H. WOŹNIAKOWSKI (2004): Finite order weights imply tractability of linear multivariate problems. J. Approx. Theory, 130:57-77.
-
(2004)
J. Approx. Theory
, vol.130
, pp. 57-77
-
-
Wasilkowski, G.W.1
Woźniakowski, H.2
-
23
-
-
0035529775
-
Local polynomial reproduction and moving least squares approximation
-
H. WENDLAND (2001): Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal., 21:285-300.
-
(2001)
IMA J. Numer. Anal.
, vol.21
, pp. 285-300
-
-
Wendland, H.1
|