-
1
-
-
0004139016
-
-
(Springer-Verlag, Heidelberg, New York)
-
Exceptions include borderline models or systems with constraints; see LIGGETT T. M., Interacting Particle Systems (Springer-Verlag, Heidelberg, New York) 1982, p. 346;
-
(1982)
Interacting Particle Systems
, pp. 346
-
-
Liggett, T.M.1
-
4
-
-
0002205186
-
-
AIZENMAN M., CHAYES J. T., CHAYES L. and NEWMAN C. M., J. Stat. Phys., 50 (1988) 1.
-
(1988)
J. Stat. Phys.
, vol.50
, pp. 1
-
-
Aizenman, M.1
Chayes, J.T.2
Chayes, L.3
Newman, C.M.4
-
12
-
-
4243889507
-
-
O'HERN C. S., LANGER S. A., LIU A. J. and NAGEL S. R., Phys. Rev. Lett., 88 (2002) 075507.
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 075507
-
-
O'Hern, C.S.1
Langer, S.A.2
Liu, A.J.3
Nagel, S.R.4
-
13
-
-
2442518273
-
-
O'HERN C. S., SILBERT L. E., LIU A. J. and NAGEL S. R., Phys. Rev. E, 68 (2003) 011306.
-
(2003)
Phys. Rev. E
, vol.68
, pp. 011306
-
-
O'Hern, C.S.1
Silbert, L.E.2
Liu, A.J.3
Nagel, S.R.4
-
14
-
-
32944472280
-
-
SILBERT L. E., LIU A. J. and NAGEL S. R., arXiv:cond-mat/0501616
-
SILBERT L. E., LIU A. J. and NAGEL S. R., arXiv:cond-mat/0501616.
-
-
-
-
15
-
-
32944480017
-
-
TONINELLI C., BIROLI G. and FISHER D. S., arXiv:cond-mat/0509661
-
TONINELLI C., BIROLI G. and FISHER D. S., arXiv:cond-mat/0509661.
-
-
-
-
16
-
-
27144474220
-
-
This exponent can probably be understood by analogy to directed percolation
-
A length scale diverging with a different exponent was calculated below Point J by DROCCO J. A. et al., Phys. Rev. Lett., 95 (2005) 088001. This exponent can probably be understood by analogy to directed percolation.
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 088001
-
-
Drocco, J.A.1
-
17
-
-
32944463929
-
-
invented this model under the guise of "bootstrap percolation", which in the mathematics community, actually denotes another class of models. The two types of models are sometimes related via duality
-
CHALUPA J., LEATH P. L. and REICH G. R., J. Phys. C, 12 (1979) invented this model under the guise of "bootstrap percolation", which in the mathematics community, actually denotes another class of models. The two types of models are sometimes related via duality.
-
(1979)
J. Phys. C
, vol.12
-
-
Chalupa, J.1
Leath, P.L.2
Reich, G.R.3
-
19
-
-
0030144334
-
-
PITTEL B., SPENCER J. and WORMALD N., J. Comb. Theory, Ser. B, 67 (1996) 111.
-
(1996)
J. Comb. Theory, Ser. B
, vol.67
, pp. 111
-
-
Pittel, B.1
Spencer, J.2
Wormald, N.3
-
25
-
-
0001475585
-
-
and references therein
-
ADLER J., Physica A, 171 (1991) 453 and references therein.
-
(1991)
Physica A
, vol.171
, pp. 453
-
-
Adler, J.1
-
34
-
-
32944481012
-
-
WYART M., SILBERT L., NAGEL S. R. and WITTEN T. A., arXiv:cond-mat/ 0508415
-
WYART M., SILBERT L., NAGEL S. R. and WITTEN T. A., arXiv:cond-mat/ 0508415.
-
-
-
-
38
-
-
0033536221
-
-
MONASSON R. et al., Nature, 400 (1999) 133.
-
(1999)
Nature
, vol.400
, pp. 133
-
-
Monasson, R.1
|