메뉴 건너뛰기




Volumn 74, Issue 2, 2006, Pages 109-117

Quantum mechanics of the 1/x 2 potential

Author keywords

[No Author keywords available]

Indexed keywords


EID: 32944456430     PISSN: 00029505     EISSN: None     Source Type: Journal    
DOI: 10.1119/1.2165248     Document Type: Article
Times cited : (175)

References (55)
  • 2
    • 0001483987 scopus 로고
    • An analytical example of renormalization in two-dimensional quantum mechanics
    • 2 potential with α=1/4 [Eq. (3)] - see Exercise 1 in Ref. 30. For discussion of the two-dimensional delta function see L. R. Mead, and J. Godines, "An analytical example of renormalization in two-dimensional quantum mechanics," Am. J. Phys. 59, 935-937 (1991);
    • (1991) Am. J. Phys. , vol.59 , pp. 935-937
    • Mead, L.R.1    Godines, J.2
  • 3
    • 0012939435 scopus 로고
    • Delta-function potentials in two- And three-dimensional quantum mechanics
    • edited by A. Ali and P. Hoodbhoy (World Scientific, Singapore)
    • R. Jackiw, "Delta-function potentials in two- and three-dimensional quantum mechanics," in M. A. B. Bég Memorial Volume, edited by A. Ali and P. Hoodbhoy (World Scientific, Singapore, 1991), pp. 25-42.
    • (1991) M. A. B. Bég Memorial Volume , pp. 25-42
    • Jackiw, R.1
  • 4
    • 32944461310 scopus 로고    scopus 로고
    • note
    • β(x).
  • 5
    • 0001499438 scopus 로고
    • Renormalization in quantum mechanics
    • K. S. Gupta and S. G. Rajeev, "Renormalization in quantum mechanics," Phys. Rev. D 48, 5940-5945 (1993).
    • (1993) Phys. Rev. D , vol.48 , pp. 5940-5945
    • Gupta, K.S.1    Rajeev, S.G.2
  • 7
    • 0003498504 scopus 로고
    • (Academic, San Diego, Eqs. (6.576.4) and (8.332.3). Incidentally, states with different K are not orthogonal
    • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products (Academic, San Diego, (1980), Eqs. (6.576.4) and (8.332.3). Incidentally, states with different K are not orthogonal.
    • (1980) Tables of Integrals, Series, and Products
    • Gradshteyn, S.1    Ryzhik, I.M.2
  • 8
    • 0004085710 scopus 로고    scopus 로고
    • (Prentice Hall, Englewood Cliffs, NJ, 2004), 2nd ed., Problem 8.11
    • 2v/(v+2) [see D. J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliffs, NJ, 2004), 2nd ed., Problem 8.11], and the exponent is infinite when v=-2. The variational principle only confirms what we already knew-that the ground state is lower than every negative energy.
    • Introduction to Quantum Mechanics
    • Griffiths, D.J.1
  • 9
    • 32944459342 scopus 로고    scopus 로고
    • Reference 6, p. 962, Eqs. (3) and (4)
    • Reference 6, p. 962, Eqs. (3) and (4).
  • 10
    • 32944465619 scopus 로고    scopus 로고
    • note
    • Some authors use a plus sign in Eq. (24), which adds π/2 to the phase shift. We prefer the minus sign, because it reduces to δ=0 when the potential is zero.
  • 11
    • 32944455752 scopus 로고
    • The one-dimensional hydrogen atom
    • For a list of accessible references see C. V. Siclen, "The one-dimensional hydrogen atom," Am. J. Phys. 56, 9-10 (1988).
    • (1988) Am. J. Phys. , vol.56 , pp. 9-10
    • Siclen, C.V.1
  • 12
    • 32944481235 scopus 로고    scopus 로고
    • note
    • 2.
  • 13
    • 32944460348 scopus 로고    scopus 로고
    • note
    • 4∈=0.043 089.
  • 14
    • 32944467931 scopus 로고    scopus 로고
    • note
    • For the ground state this inequality would appear to require g≪3 (see Fig. 5), but in practice the approximation is good up to g=3. For the excited states κ is smaller, and the approximation is valid for even higher g.
  • 15
    • 32944470559 scopus 로고    scopus 로고
    • Reference 5, Eqs. (11.112) and (11.118), and Ref. 6, Eqs. (8.331) and (8.332)
    • Reference 5, Eqs. (11.112) and (11.118), and Ref. 6, Eqs. (8.331) and (8.332).
  • 16
    • 32944469536 scopus 로고    scopus 로고
    • note
    • This holds for g < 3, as we can easily confirm by comparing the graph of Eq. (30) with Fig. 5. For larger values of g the approximation itself is invalid for the ground state. Incidentally, Eq. (29) has solutions for negative n, but these are spurious, because they violate the assumption κ∈ ≪ 1.
  • 17
    • 32944457579 scopus 로고    scopus 로고
    • note
    • n=(2/γ∈)exp(- nπ/g), where γ≡(C) = 1.781 072. See Ref. 6, Eq. (8.321.1), and p. xxviii.
  • 18
    • 32944468786 scopus 로고    scopus 로고
    • note
    • (1)(x)]* (valid for real x and real g). See Ref. 6, p. 969.
  • 19
    • 32944463529 scopus 로고    scopus 로고
    • note
    • v, and Eq. (8.332.3) to eliminate T(1-ig).
  • 20
    • 32944457308 scopus 로고    scopus 로고
    • Reference 6, Eqs. (8.331) and (8.332.1)
    • Reference 6, Eqs. (8.331) and (8.332.1).
  • 21
    • 32944476561 scopus 로고    scopus 로고
    • Reference 6, Eqs. (8.441.1) and (8.444.1), and p. xxviii
    • Reference 6, Eqs. (8.441.1) and (8.444.1), and p. xxviii.
  • 22
    • 32944466794 scopus 로고    scopus 로고
    • note
    • 1 in Eq. (42) fixed. This is not the same as going straight to g=0 and then letting ∈ → 0 [Eq. (41)], which only reproduces the limiting value π/4.
  • 23
    • 36749113502 scopus 로고
    • Almost singular potentials
    • 2 potential. Other regularizations have been proposed. See, for example, C. Schwartz, "Almost singular potentials," J. Math. Phys. 17, 863-867 (1976);
    • (1976) J. Math. Phys. , vol.17 , pp. 863-867
    • Schwartz, C.1
  • 24
    • 0010031849 scopus 로고    scopus 로고
    • Dimensional transmutation and dimensional regularization in quantum mechanics, I. General theory," and "II. Rotational invariance
    • H. E. Camblong, L. N. Epele, H. Fanchiotti, and C. A. Garca Canal, "Dimensional transmutation and dimensional regularization in quantum mechanics, I. General theory," and "II. Rotational invariance," Ann. Phys. 287, 14-100 (2001). Our approach follows Ref. 4. It is important in principle to demonstrate that all regularizations lead to the same physical predictions. If they do not, the theory is non-renormalizable and there is very little that can be done with it.
    • (2001) Ann. Phys. , vol.287 , pp. 14-100
    • Camblong, H.E.1    Epele, L.N.2    Fanchiotti, H.3    Garca Canal, C.A.4
  • 25
    • 32944457157 scopus 로고    scopus 로고
    • note
    • 2 potential; renormalization offers a means for doing so. By the way, something very similar happens in quantum electrodynamics, where the theory, naively construed, yields an infinite mass for the electron. The introduction of a cutoff renders the mass finite but indeterminate. We take the observed mass of the electron as input and use it to eliminate any explicit reference to the cutoff. The resulting renormalized theory has been spectacularly successful, yielding by far the most precise (and precisely confirmed) predictions in all of physics.
  • 26
    • 32944480254 scopus 로고    scopus 로고
    • note
    • 0 → γ + γ, which could not occur without the breaking of chiral symmetry.
  • 28
    • 32944472487 scopus 로고    scopus 로고
    • note
    • A then Eq. (52) holds.
  • 29
    • 34250688684 scopus 로고
    • Über gewöhnliche differentialgleichungen mit singularitäten und die zugehörigen entwicklungen willkürlicher funktionen
    • H. Weyl, "Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen," Math. Ann. 68, 220-269 (1910);
    • (1910) Math. Ann. , vol.68 , pp. 220-269
    • Weyl, H.1
  • 30
    • 2942734295 scopus 로고
    • Allgemeine eigenwerttheorie hermitescher funktionaloperatoren
    • J. von Neumann, "Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren," Math. Ann. ibid. 102, 49-131 (1929);
    • (1929) Math. Ann. , vol.102 , pp. 49-131
    • Von Neumann, J.1
  • 31
    • 0000261297 scopus 로고
    • On one-parameter unitary groups in Hilbert space
    • M. H. Stone, "On one-parameter unitary groups in Hilbert space," Ann. Math. 33, 643-648 (1932).
    • (1932) Ann. Math. , vol.33 , pp. 643-648
    • Stone, M.H.1
  • 35
    • 0035585510 scopus 로고    scopus 로고
    • Self-adjoint extensions of operators and the teaching of quantum mechanics
    • G. Bonneau, J. Faraut, and G. Valent, "Self-adjoint extensions of operators and the teaching of quantum mechanics," Am. J. Phys. 69, 322-331 (2001).
    • (2001) Am. J. Phys. , vol.69 , pp. 322-331
    • Bonneau, G.1    Faraut, J.2    Valent, G.3
  • 36
    • 1042291401 scopus 로고    scopus 로고
    • Operator domains and self-adjoint operators
    • V. S. Araujo, F. A. B. Coutinho, and J. F. Perez, "Operator domains and self-adjoint operators," Am. J. Phys. 72, 203-213 (2004).
    • (2004) Am. J. Phys. , vol.72 , pp. 203-213
    • Araujo, V.S.1    Coutinho, F.A.B.2    Perez, J.F.3
  • 37
    • 0004242018 scopus 로고    scopus 로고
    • (Dover, New York), 2nd ed.
    • There exist pathological functions that are square-integrable and yet do not go to zero at infinity, but there is no penalty for excluding them here. See, for example, D. V. Widder, Advanced Calculus (Dover, New York, 1998), 2nd ed., p. 325.
    • (1998) Advanced Calculus , pp. 325
    • Widder, D.V.1
  • 38
    • 32944467612 scopus 로고    scopus 로고
    • note
    • + to obtain the same result.
  • 39
    • 32944478823 scopus 로고    scopus 로고
    • note
    • H vanish if 0 ≤ x ≤ ∈ or x ≥ τ for arbitrarily small ∈ and arbitrarily large τ.
  • 40
    • 32944472629 scopus 로고    scopus 로고
    • note
    • We follow the treatment in Ref. 30, where the special case α=1/4 is posed as an exercise.
  • 41
    • 32944472802 scopus 로고    scopus 로고
    • note
    • H +.
  • 42
    • 32944474938 scopus 로고    scopus 로고
    • note
    • Mathematicians usually take η=1, but this choice offends the physicist's concern for dimensional consistency. In any case, it combines with other arbitrary constants at the end.
  • 43
    • 32944474608 scopus 로고    scopus 로고
    • note
    • 2 potential, but we shall not do so here.
  • 44
    • 32944479270 scopus 로고    scopus 로고
    • note
    • 0 carries the dimensions of length, and hence the choice of a particular self-adjoint extension entails breaking the scale invariance that led to all the difficulties in Sec. II.
  • 45
    • 32944476119 scopus 로고    scopus 로고
    • note
    • This case violates our assumption in Ref. 37, so it should be taken with a grain of salt. See Ref. 30, Example 1, for a more rigorous analysis.
  • 46
    • 32944475685 scopus 로고    scopus 로고
    • note
    • This result agrees with Eq. (80) of Ref. 30, with r → x and φ → ψ/x.
  • 47
    • 32944475392 scopus 로고    scopus 로고
    • note
    • The term "self-adjoint extension" is potentially misleading, because at first sight it appears to involve a contraction, not an expansion, of the domain. The point is that you must start out with a Hermitian operator, and H is not Hermitian with respect to the set of functions that satisfy the boundary condition ψ(0)=0. That is why we first had to restrict the domain (see Ref. 33), and the "extension" is with respect to that much more limited domain.
  • 48
    • 32944462359 scopus 로고    scopus 로고
    • note
    • 2 potential, and if the remedy is necessarily radical, so be it.
  • 49
    • 21144477411 scopus 로고
    • Classical symptoms of quantum illnesses
    • C. Zhu and J. R. Klauder, "Classical symptoms of quantum illnesses," Am. J. Phys. 61, 605-611 (1993);
    • (1993) Am. J. Phys. , vol.61 , pp. 605-611
    • Zhu, C.1    Klauder, J.R.2
  • 51
    • 11744283499 scopus 로고
    • Electron capture by polar molecules
    • J.-M. Lévy-Leblond, "Electron capture by polar molecules," Phys. Rev. 153, 1-4 (1967).
    • (1967) Phys. Rev. , vol.153 , pp. 1-4
    • Lévy-Leblond, J.-M.1
  • 52
    • 0006846565 scopus 로고
    • Minimum moment required to bind a charged particle to an extended dipole
    • M. H. Mittleman and V. P. Myerscough, "Minimum moment required to bind a charged particle to an extended dipole," Phys. Lett. 23, 545-546 (1966);
    • (1966) Phys. Lett. , vol.23 , pp. 545-546
    • Mittleman, M.H.1    Myerscough, V.P.2
  • 53
    • 0001060848 scopus 로고
    • On the critical binding of an electron by an electric dipole
    • W. B. Brown and R. E. Roberts, "On the critical binding of an electron by an electric dipole," J. Chem. Phys. 46, 2006-2007 (1966).
    • (1966) J. Chem. Phys. , vol.46 , pp. 2006-2007
    • Brown, W.B.1    Roberts, R.E.2
  • 55
    • 39249084381 scopus 로고    scopus 로고
    • Quantum anomaly in molecular physics
    • Coon and Holstein (Ref. 1); many articles by H. E. Camblong and collaborators, especially "Quantum anomaly in molecular physics," Phys. Rev. Lett. 87, 220402-1-4 (2001).
    • (2001) Phys. Rev. Lett. , vol.87
    • Camblong, H.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.