|
Volumn 1108, Issue 2, 2006, Pages 279-284
|
Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network
|
Author keywords
Artificial; Neural network; PAHs; Quantitative structure retention relationship; Retention indices
|
Indexed keywords
ERRORS;
MATHEMATICAL MODELS;
MOLECULAR WEIGHT;
NEURAL NETWORKS;
OPTIMIZATION;
TEMPERATURE MEASUREMENT;
ARTIFICIAL;
PAHS;
QUANTITATIVE STRUCTURE RETENTION RELATIONSHIP;
RETENTION INDICES;
POLYCYCLIC AROMATIC HYDROCARBONS;
POLYCYCLIC AROMATIC HYDROCARBON DERIVATIVE;
ARTICLE;
ARTIFICIAL NEURAL NETWORK;
ERROR;
MOLECULAR SIZE;
MOLECULAR WEIGHT;
PRIORITY JOURNAL;
QUANTITATIVE STRUCTURE PROPERTY RELATION;
TEMPERATURE;
|
EID: 32844473018
PISSN: 00219673
EISSN: None
Source Type: Journal
DOI: 10.1016/j.chroma.2006.01.080 Document Type: Article |
Times cited : (23)
|
References (41)
|