메뉴 건너뛰기




Volumn 317, Issue 1, 2006, Pages 28-42

Contractive type non-self mappings on metric spaces of hyperbolic type

Author keywords

Quasi contraction mapping; Stationary point; Weakly compatible mappings

Indexed keywords


EID: 32544459538     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2005.11.025     Document Type: Article
Times cited : (27)

References (16)
  • 1
    • 84972549892 scopus 로고
    • Fixed-point theorems for set-valued mappings of contractive type
    • N.A. Assad W.A. Kirk Fixed-point theorems for set-valued mappings of contractive type Pacific J. Math. 43 1972 553-562
    • (1972) Pacific J. Math. , vol.43 , pp. 553-562
    • Assad, N.A.1    Kirk, W.A.2
  • 4
    • 0002328827 scopus 로고
    • An application of a fixed point theorem of D.W. Boyd and J.S.W. Wong
    • J.L.C. Camaro An application of a fixed point theorem of D.W. Boyd and J.S.W. Wong Rev. Mat. Estatist. 6 1988 25-29
    • (1988) Rev. Mat. Estatist. , vol.6 , pp. 25-29
    • Camaro, J.L.C.1
  • 5
    • 84966200050 scopus 로고
    • A generalization of Banach's contraction principle
    • L.B. Ćirić A generalization of Banach's contraction principle Proc. Amer. Math. Soc. 45 1974 267-273
    • (1974) Proc. Amer. Math. Soc. , vol.45 , pp. 267-273
    • Ćirić, L.B.1
  • 6
    • 0000290225 scopus 로고
    • A remark on Rhoades fixed point theorem for non-self mappings
    • L.B. Ćirić A remark on Rhoades fixed point theorem for non-self mappings Int. J. Math. Math. Sci. 16 1993 397-400
    • (1993) Int. J. Math. Math. Sci. , vol.16 , pp. 397-400
    • Ćirić, L.B.1
  • 7
    • 0002282601 scopus 로고    scopus 로고
    • Quasi-contraction non-self mappings on Banach spaces
    • L.B. Ćirić Quasi-contraction non-self mappings on Banach spaces Bull. Acad. Serbe Sci. Arts 23 1998 25-31
    • (1998) Bull. Acad. Serbe Sci. Arts , vol.23 , pp. 25-31
    • Ćirić, L.B.1
  • 9
    • 84963019042 scopus 로고
    • On fixed and periodic points under contractive mappings
    • M. Edelstein On fixed and periodic points under contractive mappings J. London Math. Soc. 37 1962 74-79
    • (1962) J. London Math. Soc. , vol.37 , pp. 74-79
    • Edelstein, M.1
  • 10
    • 0019671007 scopus 로고
    • Krasnoselskii's iteration process in hyperbolic spaces
    • W.A. Kirk Krasnoselskii's iteration process in hyperbolic spaces Numer. Func. Anal. Optim. 4 1982 371-381
    • (1982) Numer. Func. Anal. Optim. , vol.4 , pp. 371-381
    • Kirk, W.A.1
  • 11
    • 84966234649 scopus 로고
    • A note on contractive mappings
    • E. Rakoch A note on contractive mappings Proc. Amer. Math. Soc. 13 1962 459-645
    • (1962) Proc. Amer. Math. Soc. , vol.13 , pp. 459-645
    • Rakoch, E.1
  • 12
    • 0002114360 scopus 로고
    • Fixed-point of contractive functions
    • S. Reich Fixed-point of contractive functions Boll. Unione Mat. Ital. IV 1972 26-42
    • (1972) Boll. Unione Mat. Ital. , vol.4 , pp. 26-42
    • Reich, S.1
  • 13
    • 0002531323 scopus 로고
    • Some applications of contractive type mappings
    • B.E. Rhoades Some applications of contractive type mappings Math. Sem. Notes Kobe Univ. 5 1977 137-139
    • (1977) Math. Sem. Notes Kobe Univ. , vol.5 , pp. 137-139
    • Rhoades, B.E.1
  • 14
    • 0012539986 scopus 로고
    • A fixed point theorem for some non-self mappings
    • B.E. Rhoades A fixed point theorem for some non-self mappings Math. Japon. 23 1978 457-459
    • (1978) Math. Japon. , vol.23 , pp. 457-459
    • Rhoades, B.E.1
  • 15
    • 84972573660 scopus 로고
    • A convexity in metric spaces and non-expansive mappings I
    • W. Takahashi A convexity in metric spaces and non-expansive mappings I Kodai Math. Sem. Rep. 22 1970 142-149
    • (1970) Kodai Math. Sem. Rep. , vol.22 , pp. 142-149
    • Takahashi, W.1
  • 16
    • 0002362209 scopus 로고
    • Applications of fixed point theorems in game theory and mathematical economics
    • A. Wieczorek Applications of fixed point theorems in game theory and mathematical economics Wiadom. Mat. 28 1988 25-34
    • (1988) Wiadom. Mat. , vol.28 , pp. 25-34
    • Wieczorek, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.