메뉴 건너뛰기




Volumn 9, Issue 1, 2006, Pages 91-108

Query-learning-based iterative feature-subset selection for learning from high-dimensional data sets

Author keywords

Drug design; Feature subset selection; High dimensional data set; Query learning; Uncertainty sampling

Indexed keywords

CLUSTERING ALGORITHMS; FEATURE EXTRACTION; FORECASTING; ITERATIVE METHODS; QUERY PROCESSING; SET THEORY;

EID: 32544441216     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-005-0199-4     Document Type: Article
Times cited : (3)

References (25)
  • 1
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • Breiman, L (1999) Pasting small votes for classification in large databases and on-line. Mach Learn 36(1-2):85-103
    • (1999) Mach Learn , vol.36 , Issue.1-2 , pp. 85-103
    • Breiman, L.1
  • 2
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3:1289-1305
    • (2003) J Mach Learn Res , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 3
    • 0031211090 scopus 로고    scopus 로고
    • A decision theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Shapire R (1997) A decision theoretic generalization of on-line learning and an application to boosting. J Comput Sys Sci 55(1):119-139
    • (1997) J Comput Sys Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Shapire, R.2
  • 4
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund Y, Seung H, Shamir E, Tishby N (1997) Selective sampling using the query by committee algorithm. Mach Learn 28(2-3):133-168
    • (1997) Mach Learn , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.2    Shamir, E.3    Tishby, N.4
  • 5
    • 0034612927 scopus 로고    scopus 로고
    • Computers aid vaccine design
    • Hagmann M (2000) Computers aid vaccine design. Science 290(5489):80-82
    • (2000) Science , vol.290 , Issue.5489 , pp. 80-82
    • Hagmann, M.1
  • 6
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832-844
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 7
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Scholkopf B, Burges C, Smola A (eds) MIT Press, Cambridge, MA
    • Joachims T (1999) Making large-scale SVM learning practical, In: Scholkopf B, Burges C, Smola A (eds) Advances in Kernel methods-support vector learning, B. MIT Press, Cambridge, MA, pp 41-56
    • (1999) Advances in Kernel Methods-support Vector Learning, B , pp. 41-56
    • Joachims, T.1
  • 8
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1-2):273-324
    • (1997) Artif Intell , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 10
    • 0031270470 scopus 로고    scopus 로고
    • Attribute selection for modelling
    • Kononenko I, Hong SJ (1997) Attribute selection for modelling. Future Gener Comput Sys 13(2-3):181-195
    • (1997) Future Gener Comput Sys , vol.13 , Issue.2-3 , pp. 181-195
    • Kononenko, I.1    Hong, S.J.2
  • 11
  • 13
    • 0003507805 scopus 로고    scopus 로고
    • Feature selection for knowledge discovery and data mining
    • Kluwer, Boston
    • Liu H, Motoda H (1998) Feature selection for knowledge discovery and data mining. Kluwer, Boston.
    • (1998)
    • Liu, H.1    Motoda, H.2
  • 14
    • 84864838607 scopus 로고    scopus 로고
    • Iteratively selecting feature subsets for mining from high-dimensional databases
    • Elomaa T, Mannila H, Toivonen H (eds) Springer, Berlin Heidelberg New York
    • Mamitsuka H (2002) Iteratively selecting feature subsets for mining from high-dimensional databases. In: Elomaa T, Mannila H, Toivonen H (eds) Proceedings of the 6th European conference on principles and practice of knowledge discovery in databases. Springer, Berlin Heidelberg New York, pp. 361-372
    • (2002) Proceedings of the 6th European Conference on Principles and Practice of Knowledge Discovery in Databases , pp. 361-372
    • Mamitsuka, H.1
  • 15
    • 32544459311 scopus 로고    scopus 로고
    • Empirical evaluation of ensemble feature subset selection methods for learning from a high-dimensional database in drug design
    • Bourbakis N (ed) IEEE Computer Society Press, Bethesda, MD
    • Mamitsuka H (2003) Empirical evaluation of ensemble feature subset selection methods for learning from a high-dimensional database in drug design. In: Bourbakis N (ed) Proceedings of the third IEEE international symposium on bioinformatics and bioengineering. IEEE Computer Society Press, Bethesda, MD, pp. 253-257
    • (2003) Proceedings of the Third IEEE International Symposium on Bioinformatics and Bioengineering , pp. 253-257
    • Mamitsuka, H.1
  • 16
    • 32544439732 scopus 로고    scopus 로고
    • Efficient mining from large databases by query learning
    • Langley P (ed) Morgan Kaufmann, Stanford University, Stanford
    • Mamitsuka H, Abe N (2000) Efficient mining from large databases by query learning. In: Langley P (ed) Proceedings of the seventeenth international conference on machine learning. Morgan Kaufmann, Stanford University, Stanford, pp. 575-582
    • (2000) Proceedings of the Seventeenth International Conference on Machine Learning , pp. 575-582
    • Mamitsuka, H.1    Abe, N.2
  • 17
    • 0036491696 scopus 로고    scopus 로고
    • Chemical database techniques in drug discovery
    • Miller MA (2002) Chemical database techniques in drug discovery. Nat Rev Drug Discovery 1:220-227
    • (2002) Nat Rev Drug Discovery , vol.1 , pp. 220-227
    • Miller, M.A.1
  • 18
    • 0013161560 scopus 로고    scopus 로고
    • On feature selection: Learning with exponentially many irrelevant features as training examples
    • Shavlik J (ed) Morgan Kaufmann, Madison, WI
    • Ng A (1998) On feature selection: Learning with exponentially many irrelevant features as training examples. In: Shavlik J (ed) Proceedings of the fifteenth international conference on machine learning. Morgan Kaufmann, Madison, WI, pp. 404-412
    • (1998) Proceedings of the Fifteenth International Conference on Machine Learning , pp. 404-412
    • Ng, A.1
  • 19
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • Provost F, Kolluri V (1999) A survey of methods for scaling up inductive algorithms. Know Discovery Data Min 3(2):131-169
    • (1999) Know Discovery Data Min , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.1    Kolluri, V.2
  • 20
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their applications to chess endgames
    • Michalski RS, Carbonell JG, Mitchell TM (eds) Morgan Kaufmann, Palo Alto, CA
    • Quinlan J (1983) Learning efficient classification procedures and their applications to chess endgames. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning: An artificial intelligence approach. Morgan Kaufmann, Palo Alto, CA, pp. 463-482
    • (1983) Machine Learning: An Artificial Intelligence Approach , pp. 463-482
    • Quinlan, J.1
  • 22
  • 24
    • 0000959484 scopus 로고    scopus 로고
    • CLIFF: Clustering of high-dimensional microarray data via feature filtering using normalized cuts
    • Xing EP, Karp RM (2001) CLIFF: Clustering of high-dimensional microarray data via feature filtering using normalized cuts. Bioinformatics 17(Suppl 1):S306-S315
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Xing, E.P.1    Karp, R.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.