메뉴 건너뛰기




Volumn , Issue , 2005, Pages 655-662

Extracted global structure makes local building block processing effective in XCS

Author keywords

Bayesian Optimization Algorithm; Building Block Processing; Decomposable Classification Problems; Estimation of Distribution Algorithms; Extended Compact GA; Learning Classifier Systems

Indexed keywords

GENETIC ALGORITHMS; LEARNING SYSTEMS; MATHEMATICAL OPERATORS; PROBLEM SOLVING;

EID: 32444434798     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1068009.1068121     Document Type: Conference Paper
Times cited : (10)

References (39)
  • 6
    • 0041780883 scopus 로고    scopus 로고
    • Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy
    • M. V. Butz, D. E. Goldberg, and K. Tharakunnel. Analysis and improvement of fitness exploitation in XCS: Bounding models, tournament selection, and bilateral accuracy. Evolutionary Computation, 11:239-277, 2003.
    • (2003) Evolutionary Computation , vol.11 , pp. 239-277
    • Butz, M.V.1    Goldberg, D.E.2    Tharakunnel, K.3
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. H. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.H.2
  • 13
    • 0003738581 scopus 로고    scopus 로고
    • Linkage learning via probabilistic modeling in the ECGA
    • Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • G. Harik. Linkage learning via probabilistic modeling in the ECGA. IlliGAL report 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, 1999.
    • (1999) IlliGAL Report 99010
    • Harik, G.1
  • 14
    • 0003846045 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Microsoft Research, Redmond, WA
    • D. Heckerman, D. Geiger, and D. M. Chlckering. Learning Bayesian networks: The combination of knowledge and statistical data. Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA, 1994.
    • (1994) Technical Report , vol.MSR-TR-94-09
    • Heckerman, D.1    Geiger, D.2    Chlckering, D.M.3
  • 15
    • 85012775611 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • J. F. Lemmer and L. N. Kanal, editors. Elsevier, Amsterdam, London, New York
    • M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in Artificial Intelligence, pages 149-163. Elsevier, Amsterdam, London, New York, 1988.
    • (1988) Uncertainty in Artificial Intelligence , pp. 149-163
    • Henrion, M.1
  • 17
    • 0001666176 scopus 로고
    • Cognitive systems based on adaptive algorithms
    • D. A. Waterman and F. Hayes-Roth, editors. Academic Press, New York
    • J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms. In D. A. Waterman and F. Hayes-Roth, editors, Pattern directed inference systems, pages 313-329. Academic Press, New York, 1978.
    • (1978) Pattern Directed Inference Systems , pp. 313-329
    • Holland, J.H.1    Reitman, J.S.2
  • 19
    • 4344693783 scopus 로고    scopus 로고
    • A review on estimation of distribution algorithms
    • P. Larrañaga and J. A. Lozano, editors, chapter 3. Kluwer Academic Publishers, Boston, MA
    • P. Larrañaga. A review on estimation of distribution algorithms. In P. Larrañaga and J. A. Lozano, editors, Estimation of Distribution Algorithms, chapter 3, pages 57-100. Kluwer Academic Publishers, Boston, MA, 2002.
    • (2002) Estimation of Distribution Algorithms , pp. 57-100
    • Larrañaga, P.1
  • 22
    • 32444445337 scopus 로고    scopus 로고
    • Extended compact genetic algorithm in C++
    • Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • F. Lobo and G. Harik. Extended compact genetic algorithm in C++. IlliGAL report 99016, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, 1999.
    • (1999) IlliGAL Report 99016
    • Lobo, F.1    Harik, G.2
  • 24
    • 84958959530 scopus 로고    scopus 로고
    • From recombination of genes to the estimation of distributions I. Binary parameters
    • H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions I. Binary parameters. Parallel Problem Solving from Nature, pages 178-187, 1996.
    • (1996) Parallel Problem Solving from Nature , pp. 178-187
    • Mühlenbein, H.1    Paaß, G.2
  • 25
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Dept. of Computer Science, University of Toronto
    • R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993.
    • (1993) Technical Report , vol.CRG-TR-93-1
    • Neal, R.M.1
  • 31
    • 0141844529 scopus 로고    scopus 로고
    • Getting the best of both worlds: Discrete and continuous genetic and evolutionary algorithms in concert
    • M. Pelikan, D. E. Goldberg, and S. Tsutsui. Getting the best of both worlds: Discrete and continuous genetic and evolutionary algorithms in concert. Information Sciences, 156(3-4):36-45, 2003.
    • (2003) Information Sciences , vol.156 , Issue.3-4 , pp. 36-45
    • Pelikan, M.1    Goldberg, D.E.2    Tsutsui, S.3
  • 32
    • 32444437611 scopus 로고    scopus 로고
    • Improving the discovery component of classifier systems by the application of estimation of distribution algorithms
    • Chania, Greece
    • J. P. Rivera and R. Santana. Improving the discovery component of classifier systems by the application of estimation of distribution algorithms. In Proceedings of the students sessions, ACAI'99, pages 43-44, Chania, Greece, 1999.
    • (1999) Proceedings of the Students Sessions, ACAI'99 , pp. 43-44
    • Rivera, J.P.1    Santana, R.2
  • 33
    • 32444437721 scopus 로고    scopus 로고
    • On extended compact genetic algorithm
    • Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • K. Sastry and D. E. Goldberg. On extended compact genetic algorithm. IlliGAL report 2000026, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, 2000.
    • (2000) IlliGAL Report 2000026
    • Sastry, K.1    Goldberg, D.E.2
  • 34
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 37
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • S. W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation, 3(2):149-175, 1995.
    • (1995) Evolutionary Computation , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.W.1
  • 39
    • 0042643357 scopus 로고    scopus 로고
    • Get real! XCS with continuous-valued inputs
    • P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors. Springer-Verlag, Berlin Heidelberg
    • S. W. Wilson. Get real! XCS with continuous-valued inputs. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Learning classifier systems: From foundations to applications (LNAI1813), pages 209-219. Springer-Verlag, Berlin Heidelberg, 2000.
    • (2000) Learning Classifier Systems: From Foundations to Applications (LNAI1813) , pp. 209-219
    • Wilson, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.