-
2
-
-
0001642365
-
Upper semicontinuity of attractors for small random perturbations of dynamical systems
-
T. Caraballo, J.A. Langa, J.C. Robinson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Commun. PDE 23 (1998) 1557-1581.
-
(1998)
Commun. PDE
, vol.23
, pp. 1557-1581
-
-
Caraballo, T.1
Langa, J.A.2
Robinson, J.C.3
-
3
-
-
0039459032
-
Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems
-
B. Cockburn, D.A. Jones, E.S. Titi, Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems, Math. Comp. 66 (1997) 1073-1087.
-
(1997)
Math. Comp.
, vol.66
, pp. 1073-1087
-
-
Cockburn, B.1
Jones, D.A.2
Titi, E.S.3
-
4
-
-
84990581938
-
Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractor for 2D Navier-Stokes equation
-
P. Constantin, C. Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractor for 2D Navier-Stokes equation, Commun. Pure Appl. Math. 38 (1985) 1-27.
-
(1985)
Commun. Pure Appl. Math.
, vol.38
, pp. 1-27
-
-
Constantin, P.1
Foias, C.2
-
5
-
-
0003288852
-
Spectral theory and differential operators
-
Cambridge University Press, Cambridge
-
E.B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995.
-
(1995)
Cambridge Studies in Advanced Mathematics
, vol.42
-
-
Davies, E.B.1
-
6
-
-
0003465257
-
-
Wiley, New York
-
A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential Attractors for Dissipative Evolution Equations, Wiley, New York, 1994.
-
(1994)
Exponential Attractors for Dissipative Evolution Equations
-
-
Eden, A.1
Foias, C.2
Nicolaenko, B.3
Temam, R.4
-
7
-
-
0003228130
-
Partial differential equations
-
American Mathematical Society, Providence, RI
-
L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998.
-
(1998)
Graduate Studies in Mathematics
, vol.19
-
-
Evans, L.C.1
-
10
-
-
0003418232
-
Geometric measure theory
-
(reprint of 1969 edition), Springer, Berlin
-
H. Federer, Geometric Measure Theory, Classics in Mathematics (reprint of 1969 edition), Springer, Berlin, 1991.
-
(1991)
Classics in Mathematics
-
-
Federer, H.1
-
11
-
-
0002062139
-
Gevrey regularity for nonlinear analytic parabolic equations
-
A.B. Ferrari, E.S. Titi, Gevrey regularity for nonlinear analytic parabolic equations, Comm. PDE 23 (1998) 1-16.
-
(1998)
Comm. PDE
, vol.23
, pp. 1-16
-
-
Ferrari, A.B.1
Titi, E.S.2
-
12
-
-
22244442110
-
Determining nodes for the Kuramoto-Sivashinsky equation
-
C. Foias, I. Kukavica, Determining nodes for the Kuramoto-Sivashinsky equation, J. Dyn. Diff. Eq. 7 (1995) 365-373.
-
(1995)
J. Dyn. Diff. Eq.
, vol.7
, pp. 365-373
-
-
Foias, C.1
Kukavica, I.2
-
13
-
-
0013093504
-
Navier-stokes equations and turbulence
-
Cambridge University Press, Cambridge
-
C. Foias, O. Manley, R. Rosa, R. Temam, Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83, Cambridge University Press, Cambridge, 2001.
-
(2001)
Encyclopedia of Mathematics and Its Applications
, vol.83
-
-
Foias, C.1
Manley, O.2
Rosa, R.3
Temam, R.4
-
14
-
-
0003169927
-
Finite fractal dimensions and Hölder-Lipschitz parametrization
-
C. Foias, E.J. Olson, Finite fractal dimensions and Hölder-Lipschitz parametrization, Indiana Univ. Math. J. 45 (1996) 603-616.
-
(1996)
Indiana Univ. Math. J.
, vol.45
, pp. 603-616
-
-
Foias, C.1
Olson, E.J.2
-
15
-
-
0002449201
-
Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension 2
-
C. Foias, G. Prodi, Sur le comportement global des solutions non stationnaires des équations de Navier-Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova 39 (1967) 1-34.
-
(1967)
Rend. Sem. Mat. Univ. Padova
, vol.39
, pp. 1-34
-
-
Foias, C.1
Prodi, G.2
-
16
-
-
84966204481
-
Determination of the solutions of the Navier-Stokes equations by a set of nodal values
-
C. Foias, R. Temam, Determination of the solutions of the Navier-Stokes equations by a set of nodal values, Math. Comp. 43 (1984) 117-133.
-
(1984)
Math. Comp.
, vol.43
, pp. 117-133
-
-
Foias, C.1
Temam, R.2
-
17
-
-
33746636159
-
Gevrey class regularity for the solutions of the Navier-Stokes equations
-
C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 (1989) 359-369.
-
(1989)
J. Funct. Anal.
, vol.87
, pp. 359-369
-
-
Foias, C.1
Temam, R.2
-
18
-
-
0000166593
-
Determining nodes, finite difference schemes and inertial manifolds
-
C. Foias, E.S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity 4 (1991) 135-153.
-
(1991)
Nonlinearity
, vol.4
, pp. 135-153
-
-
Foias, C.1
Titi, E.S.2
-
19
-
-
0042044430
-
Smooth attractors have zero 'thickness'
-
P.K. Friz, J.C. Robinson, Smooth attractors have zero 'thickness', J. Math. Anal. Appl. 240 (1999) 37-46.
-
(1999)
J. Math. Anal. Appl.
, vol.240
, pp. 37-46
-
-
Friz, P.K.1
Robinson, J.C.2
-
20
-
-
0347572322
-
Parametrising the attractor of the two-dimensional Navier-Stokes equations with a finite number of nodal values
-
P.K. Friz, J.C. Robinson, Parametrising the attractor of the two-dimensional Navier-Stokes equations with a finite number of nodal values, Physica D 148 (2001) 201-220.
-
(2001)
Physica D
, vol.148
, pp. 201-220
-
-
Friz, P.K.1
Robinson, J.C.2
-
22
-
-
0000322045
-
Dimension of the attractor associated to the Ginzburg-Landau equation
-
J.-M. Ghidaglia, B. Hèron, Dimension of the attractor associated to the Ginzburg-Landau equation, Physica D 28 (1987) 282-304.
-
(1987)
Physica D
, vol.28
, pp. 282-304
-
-
Ghidaglia, J.-M.1
Hèron, B.2
-
23
-
-
0011444236
-
Comportement á l'Infini des solutions des équations de Navier-Stokes et propri rsquo;et rsquo;edes ensembles fonctionnels invariantes (ou attracteurs)
-
C. Guillopé, Comportement á l'infini des solutions des équations de Navier-Stokes et propri rsquo;et rsquo;edes ensembles fonctionnels invariantes (ou attracteurs), Ann. Inst. Fourier (Grenoble) 32 (1982) 1-37.
-
(1982)
Ann. Inst. Fourier (Grenoble)
, vol.32
, pp. 1-37
-
-
Guillopé, C.1
-
25
-
-
0003293929
-
Asymptotic behaviour of dissipative systems
-
American Mathematics Society, Providence, RI
-
J.K. Hale, Asymptotic behaviour of dissipative systems, Mathematics Surveys and Monographs, vol. 25, American Mathematics Society, Providence, RI, 1988.
-
(1988)
Mathematics Surveys and Monographs
, vol.25
-
-
Hale, J.K.1
-
26
-
-
0033196607
-
Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces
-
B. Hunt, V.Y. Kaloshin, Regularity of embeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity 12 (1999) 1263-1275.
-
(1999)
Nonlinearity
, vol.12
, pp. 1263-1275
-
-
Hunt, B.1
Kaloshin, V.Y.2
-
27
-
-
34047228827
-
Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations
-
M.S. Jolly, I.G. Kevrekidis, E.S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D 44 (1990) 38-60.
-
(1990)
Physica D
, vol.44
, pp. 38-60
-
-
Jolly, M.S.1
Kevrekidis, I.G.2
Titi, E.S.3
-
28
-
-
0346743549
-
On the number of determining nodes for the 2D Navier-Stokes equations
-
D.A. Jones, E.S. Titi, On the number of determining nodes for the 2D Navier-Stokes equations, Physica D 60 (1992) 72-88.
-
(1992)
Physica D
, vol.60
, pp. 72-88
-
-
Jones, D.A.1
Titi, E.S.2
-
29
-
-
0039085599
-
Determining finite volume elements for the 2D Navier-Stokes equations
-
D.A. Jones, E.S. Titi, Determining finite volume elements for the 2D Navier-Stokes equations, Physica D 60 (1992) 165-174.
-
(1992)
Physica D
, vol.60
, pp. 165-174
-
-
Jones, D.A.1
Titi, E.S.2
-
30
-
-
0000646281
-
Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations
-
D.A. Jones, E.S. Titi, Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations, Indiana Univ. Math. J. 42 (1993) 1-12.
-
(1993)
Indiana Univ. Math. J.
, vol.42
, pp. 1-12
-
-
Jones, D.A.1
Titi, E.S.2
-
31
-
-
0001024872
-
On the number of determining nodes for the Ginzburg-Landau equation
-
I. Kukavica, On the number of determining nodes for the Ginzburg-Landau equation, Nonlinearity 5 (1992) 997-1006.
-
(1992)
Nonlinearity
, vol.5
, pp. 997-1006
-
-
Kukavica, I.1
-
33
-
-
0000388781
-
On a backward estimate for solutions of parabolic differential equations and its application to unique continuation
-
K. Kurata, On a backward estimate for solutions of parabolic differential equations and its application to unique continuation, Adv. Stud. Pure Math. 23 (1994) 247-257.
-
(1994)
Adv. Stud. Pure Math.
, vol.23
, pp. 247-257
-
-
Kurata, K.1
-
34
-
-
0003391813
-
-
Academic Press, London
-
C. Kuratowski, Topology, vol. I, Academic Press, London, 1968.
-
(1968)
Topology
, vol.1
-
-
Kuratowski, C.1
-
36
-
-
0003290175
-
On the dimension of the compact invariant sets of certain nonlinear maps
-
R. Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, Springer Lecture Notes in Mathematics 898 (1981) 230-242.
-
(1981)
Springer Lecture Notes in Mathematics
, vol.898
, pp. 230-242
-
-
Mañé, R.1
-
37
-
-
0000857725
-
The complex Ginzburg-Landau equation on large and unbounded domains: Sharper bounds and attractors
-
A. Mielke, The complex Ginzburg-Landau equation on large and unbounded domains: sharper bounds and attractors, Nonlinearity 10 (1997) 199-222.
-
(1997)
Nonlinearity
, vol.10
, pp. 199-222
-
-
Mielke, A.1
-
38
-
-
0001446993
-
Unique continuation for parabolic equations
-
C.C. Poon, Unique continuation for parabolic equations, Commun. PDE 21 (1996) 521-539.
-
(1996)
Commun. PDE
, vol.21
, pp. 521-539
-
-
Poon, C.C.1
-
39
-
-
0347340616
-
Blow-up behavior for semilinear heat equations in nonconvex domains
-
C.C. Poon, Blow-up behavior for semilinear heat equations in nonconvex domains, Diff. Integral Eq. 13 (2000) 1111-1138.
-
(2000)
Diff. Integral Eq.
, vol.13
, pp. 1111-1138
-
-
Poon, C.C.1
-
40
-
-
0025725569
-
Time analyticity and Gevrey class regularity for solutions of a class of dissipative partial differential equations
-
K.S. Promislow, Time analyticity and Gevrey class regularity for solutions of a class of dissipative partial differential equations, Nonlinear Anal.: Theoret. Meth. Appl. 16 (1991) 959-980.
-
(1991)
Nonlinear Anal.: Theoret. Meth. Appl.
, vol.16
, pp. 959-980
-
-
Promislow, K.S.1
-
42
-
-
57249092642
-
A rigorous treatment of 'experimental' observations for the two-dimensional Navier-Stokes equations
-
J.C. Robinson, A rigorous treatment of 'experimental' observations for the two-dimensional Navier-Stokes equations, Proc. R. Soc. London A 457 (2001) 1007-1020.
-
(2001)
Proc. R. Soc. London A
, vol.457
, pp. 1007-1020
-
-
Robinson, J.C.1
-
43
-
-
0000906368
-
-
T. Sauer, J.A. Yorke, M. Casdagli, Embedology, J. Stat. Phys. 71 (1993) 529-547.
-
(1993)
Embedology, J. Stat. Phys.
, vol.71
, pp. 529-547
-
-
Sauer, T.1
Yorke, J.A.2
Casdagli, M.3
-
44
-
-
21344438338
-
Critical point for least-squares problem involving certain analytic functions, with applications to sigmoidal nets
-
E.D. Sontag, Critical point for least-squares problem involving certain analytic functions, with applications to sigmoidal nets, Adv. Comp. Math. 5 (1996) 245-268.
-
(1996)
Adv. Comp. Math.
, vol.5
, pp. 245-268
-
-
Sontag, E.D.1
-
45
-
-
0042848806
-
For differential equations with r parameters, 2r + 1 experiments are enough for identification
-
E.D. Sontag, For differential equations with r parameters, 2r + 1 experiments are enough for identification. J. Nonlin. Sci. 12 (2002) 553-583.
-
(2002)
J. Nonlin. Sci.
, vol.12
, pp. 553-583
-
-
Sontag, E.D.1
-
47
-
-
0000779360
-
Detecting strange attractors in turbulence
-
F. Takens, Detecting strange attractors in turbulence, Springer Lecture Notes in Mathematics 898 (1981) 366-381.
-
(1981)
Springer Lecture Notes in Mathematics
, vol.898
, pp. 366-381
-
-
Takens, F.1
-
49
-
-
0003424544
-
-
Springer, Berlin
-
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1st ed., Springer, Berlin, 1988.; R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer, Berlin, 1996.
-
(1988)
Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1st Ed.
-
-
Temam, R.1
-
50
-
-
0003424544
-
-
Springer, Berlin
-
R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1st ed., Springer, Berlin, 1988.; R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer, Berlin, 1996.
-
(1996)
Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd Ed.
-
-
Temam, R.1
|