메뉴 건너뛰기




Volumn 8, Issue 3, 1997, Pages 335-348

Representing heterogeneity in consumer response models: 1996 Choice conference participants

Author keywords

[No Author keywords available]

Indexed keywords


EID: 3242768229     PISSN: 09230645     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1007916714911     Document Type: Article
Times cited : (31)

References (44)
  • 1
    • 84889545587 scopus 로고    scopus 로고
    • On the identification of market segments
    • Ohio State University, Columbus, Ohio
    • Allenby, G. M., and J. Ginter. (1996). On the identification of market segments, Working Paper, Ohio State University, Columbus, Ohio.
    • (1996) Working Paper
    • Allenby, G.M.1    Ginter, J.2
  • 2
    • 84889542597 scopus 로고    scopus 로고
    • Marketing models of consumer heterogeneity
    • Ohio State University, Columbus, Ohio
    • Allenby, G. M., and P. E. Rossi. (1996). Marketing models of consumer heterogeneity. Working Paper, Ohio State University, Columbus, Ohio.
    • (1996) Working Paper
    • Allenby, G.M.1    Rossi, P.E.2
  • 6
    • 0001052493 scopus 로고
    • Investigating heterogeneity in brand preferences in logit model for panel data
    • Chintagunta, P., D. Jain, and N. Vilcassim. (1991). Investigating heterogeneity in brand preferences in logit model for panel data, Journal of Marketing Research 28, 417-428.
    • (1991) Journal of Marketing Research , vol.28 , pp. 417-428
    • Chintagunta, P.1    Jain, D.2    Vilcassim, N.3
  • 7
    • 84889516303 scopus 로고    scopus 로고
    • Combinatorial optimization approaches to normative market segmentation
    • June 1996
    • DeSarbo, W. S., and D. Grisaffe. (1996). Combinatorial optimization approaches to normative market segmentation, 1996 ARTS Forum Presentation, June 1996.
    • (1996) 1996 ARTS Forum Presentation
    • DeSarbo, W.S.1    Grisaffe, D.2
  • 8
    • 0000727780 scopus 로고
    • Constrained classification: The use of a priori information in cluster analysis
    • DeSarbo, W. S., and V. Mahajan. (1984). Constrained classification: the use of a priori information in cluster analysis, Psychometrika 49, 187-215.
    • (1984) Psychometrika , vol.49 , pp. 187-215
    • DeSarbo, W.S.1    Mahajan, V.2
  • 9
    • 0001104737 scopus 로고
    • A simulated annealing methodology for clusterwise linear regression
    • DeSarbo, W. S., R. Oliver, and A. Rangaswamy. (1989). A simulated annealing methodology for clusterwise linear regression, Psychometrika 54(4), 707-736.
    • (1989) Psychometrika , vol.54 , Issue.4 , pp. 707-736
    • DeSarbo, W.S.1    Oliver, R.2    Rangaswamy, A.3
  • 10
    • 0000133972 scopus 로고
    • Marketing segmentation with choice-based conjoint analysis
    • DeSarbo, W. S., V. Ramaswamy, and S. Cohen. (1995). Marketing segmentation with choice-based conjoint analysis, Marketing Letters 6, 137-148.
    • (1995) Marketing Letters , vol.6 , pp. 137-148
    • DeSarbo, W.S.1    Ramaswamy, V.2    Cohen, S.3
  • 13
    • 0001619049 scopus 로고
    • Modeling multiple sources of heterogeneity in multinomial logit models: Methodological and managerial issues
    • Gonul, F., and K. Srinivasan. (1993a). Modeling multiple sources of heterogeneity in multinomial logit models: Methodological and managerial issues, Marketing Science 12, 213-229.
    • (1993) Marketing Science , vol.12 , pp. 213-229
    • Gonul, F.1    Srinivasan, K.2
  • 14
    • 21344477259 scopus 로고
    • Consumer purchase behavior in a frequently bought product category: Estimation issues and managerial insights from a hazard function model with heterogeneity
    • Gonul, F., and K. Srinivasan. (1993b). Consumer purchase behavior in a frequently bought product category: Estimation issues and managerial insights from a hazard function model with heterogeneity, Journal of the American Statistical Association 88, 1219-1227.
    • (1993) Journal of the American Statistical Association , vol.88 , pp. 1219-1227
    • Gonul, F.1    Srinivasan, K.2
  • 15
    • 21344484421 scopus 로고
    • On using demographic variables to determine segment membership in logit mixture models
    • Gupta, S., and P. K. Chintagunta. (1992). On using demographic variables to determine segment membership in logit mixture models, Journal of Marketing Research 31, 128-136.
    • (1992) Journal of Marketing Research , vol.31 , pp. 128-136
    • Gupta, S.1    Chintagunta, P.K.2
  • 16
    • 0000451561 scopus 로고
    • Improving the predictive power of conjoint analysis; the use of factor analysis and cluster analysis
    • Hagerty, M. R. (1985). Improving the predictive power of conjoint analysis; the use of factor analysis and cluster analysis, Journal of Marketing Research 22, 168-184.
    • (1985) Journal of Marketing Research , vol.22 , pp. 168-184
    • Hagerty, M.R.1
  • 17
    • 0000159540 scopus 로고
    • A method for minimizing the impact of distributional assumptions in econometric models for duration data
    • Heckman, J. J., and B. Singer. (1984). A method for minimizing the impact of distributional assumptions in econometric models for duration data, Econometrica 52 271-320.
    • (1984) Econometrica , vol.52 , pp. 271-320
    • Heckman, J.J.1    Singer, B.2
  • 18
    • 84889552061 scopus 로고    scopus 로고
    • STEMM: A general finite mixture structural equation model
    • forthcoming
    • Jedidi, K., S. Jagpal, and W. S. DeSarbo. (1996). STEMM: A general finite mixture structural equation model, Journal of Classification (forthcoming).
    • (1996) Journal of Classification
    • Jedidi, K.1    Jagpal, S.2    DeSarbo, W.S.3
  • 19
    • 84889537119 scopus 로고    scopus 로고
    • Semi-Parametric Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity
    • forthcoming
    • Jedidi, K., H. Jagpal, and W. S. DeSarbo. (1996). Semi-Parametric Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity, Marketing Science (forthcoming).
    • (1996) Marketing Science
    • Jedidi, K.1    Jagpal, H.2    DeSarbo, W.S.3
  • 20
    • 0009200509 scopus 로고    scopus 로고
    • On estimating finite mixtures of multivariate regression and simultaneous equation models
    • Jedidi, K., V. Ramaswamy, W. S. DeSarbo, and M. Wedel. (1996). On estimating finite mixtures of multivariate regression and simultaneous equation models, Structural Equation Modeling 3(3), 266-287.
    • (1996) Structural Equation Modeling , vol.3 , Issue.3 , pp. 266-287
    • Jedidi, K.1    Ramaswamy, V.2    DeSarbo, W.S.3    Wedel, M.4
  • 21
    • 0000986174 scopus 로고
    • A least-squares procedure for benefit segmentation with conjoint experiments
    • Kamakura, W. A. (1988). A least-squares procedure for benefit segmentation with conjoint experiments, Journal of Marketing Research 25, 157-167.
    • (1988) Journal of Marketing Research , vol.25 , pp. 157-167
    • Kamakura, W.A.1
  • 22
    • 0030495031 scopus 로고    scopus 로고
    • Modeling preference and structural heterogeneity in consumer choice
    • Kamakura, W., B. D. Kim, and J. Lee. (1996). Modeling preference and structural heterogeneity in consumer choice, Marketing Science 15-2, 152-172.
    • (1996) Marketing Science , vol.15 , Issue.2 , pp. 152-172
    • Kamakura, W.1    Kim, B.D.2    Lee, J.3
  • 24
    • 0030520525 scopus 로고    scopus 로고
    • Modifying cluster-based segments to enhance agreement with an exogenous response variable
    • Krieger, A., and P. E. Green. (1996). Modifying cluster-based segments to enhance agreement with an exogenous response variable, Journal of Marketing Research 33, 351-363.
    • (1996) Journal of Marketing Research , vol.33 , pp. 351-363
    • Krieger, A.1    Green, P.E.2
  • 26
    • 0030521288 scopus 로고    scopus 로고
    • Hierarchical Bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs
    • Lenk, P. J., W. S. DeSarbo, P. E. Green, and M. R. Young. (1996). Hierarchical Bayes conjoint analysis: recovery of partworth heterogeneity from reduced experimental designs, Marketing Science 15-2, 173-191.
    • (1996) Marketing Science , vol.15 , Issue.2 , pp. 173-191
    • Lenk, P.J.1    DeSarbo, W.S.2    Green, P.E.3    Young, M.R.4
  • 31
    • 0000130085 scopus 로고
    • Clusterwise negative binomial regression for count data analysis
    • Ramaswamy, V., E. W. Anderson, and W. S. DeSarbo. (1994). Clusterwise negative binomial regression for count data analysis. Management Science 40, 405-412.
    • (1994) Management Science , vol.40 , pp. 405-412
    • Ramaswamy, V.1    Anderson, E.W.2    DeSarbo, W.S.3
  • 32
    • 0030504857 scopus 로고    scopus 로고
    • Joint segmentation on distinct interdependent bases with categorical data
    • Ramaswamy, V., R. Chatterjee, and S. Cohen. (1996). Joint segmentation on distinct interdependent bases with categorical data, Journal of Marketing Research 33, 337-350.
    • (1996) Journal of Marketing Research , vol.33 , pp. 337-350
    • Ramaswamy, V.1    Chatterjee, R.2    Cohen, S.3
  • 33
    • 0001507671 scopus 로고
    • Model Selection Criteria: An Investigation of Relative Accuracy, Posterior Probabilities, and Combination of Criteria
    • Rust, R. T., D. Simester, R. J. Broadie, and V. Nilikant. (1995). Model Selection Criteria: An Investigation of Relative Accuracy, Posterior Probabilities, and Combination of Criteria, Management Science 41, 322-333.
    • (1995) Management Science , vol.41 , pp. 322-333
    • Rust, R.T.1    Simester, D.2    Broadie, R.J.3    Nilikant, V.4
  • 34
    • 0000271839 scopus 로고
    • Algorithm 39: Clusterwise linear regression
    • Späth, H. (1979). Algorithm 39: Clusterwise linear regression. Computing 22, 367-373.
    • (1979) Computing , vol.22 , pp. 367-373
    • Späth, H.1
  • 37
    • 0030521578 scopus 로고    scopus 로고
    • Metric conjoint segmentation methods: A Monte Carlo comparison
    • Vriens, M., M. Wedel, and T. Wilms. (1996). Metric conjoint segmentation methods: a Monte Carlo comparison, Journal of Marketing Research 33, 73-85.
    • (1996) Journal of Marketing Research , vol.33 , pp. 73-85
    • Vriens, M.1    Wedel, M.2    Wilms, T.3
  • 38
    • 0040447870 scopus 로고
    • A review of latent class regression models and their applications
    • Richard P. Bagozzi (ed.)
    • Wedel, M., and W. S. DeSarbo. (1994). A review of latent class regression models and their applications. In Richard P. Bagozzi (ed.), Advanced Methods for Marketing Research 353-388.
    • (1994) Advanced Methods for Marketing Research , pp. 353-388
    • Wedel, M.1    DeSarbo, W.S.2
  • 39
    • 34249753047 scopus 로고
    • A mixture likelihood approach for generalized linear models
    • Wedel, M., and W. S. DeSarbo. (1995). A mixture likelihood approach for generalized linear models, Journal of Classification 12, 21-55.
    • (1995) Journal of Classification , vol.12 , pp. 21-55
    • Wedel, M.1    DeSarbo, W.S.2
  • 42
    • 0001500587 scopus 로고
    • A clusterwise regression method for simultaneous fuzzy market structures and benefit segmentation
    • Wedel, M., and J. E. M. Steenkamp. (1991). A clusterwise regression method for simultaneous fuzzy market structures and benefit segmentation, Journal of Marketing Research 28, 385-396.
    • (1991) Journal of Marketing Research , vol.28 , pp. 385-396
    • Wedel, M.1    Steenkamp, J.E.M.2
  • 43
    • 0002210265 scopus 로고
    • On the convergence properties of the E-M algorithm
    • Wu, C. F. J. (1983). On the convergence properties of the E-M algorithm. Annals of Statistics 11, 95-103.
    • (1983) Annals of Statistics , vol.11 , pp. 95-103
    • Wu, C.F.J.1
  • 44
    • 84910906566 scopus 로고
    • Generalized linear models with random effect; a Gibbs sampling approach
    • Zeger, S. L., and M. R. Karim. (1991). Generalized linear models with random effect; a Gibbs sampling approach, Journal of the American Statistical Association 86(413), 79-86.
    • (1991) Journal of the American Statistical Association , vol.86 , Issue.413 , pp. 79-86
    • Zeger, S.L.1    Karim, M.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.