-
1
-
-
0002645399
-
Big projective modules are free
-
H. Bass, Big projective modules are free, Illinois J. Math. 7 (1963) 24-31.
-
(1963)
Illinois J. Math.
, vol.7
, pp. 24-31
-
-
Bass, H.1
-
4
-
-
0004287970
-
-
Longman, Harlow
-
N.V. Dung, D. van Huynh, P.F. Smith, R. Wisbauer, Extending Modules, Longman, Harlow, 1994.
-
(1994)
Extending Modules
-
-
Dung, N.V.1
Van Huynh, D.2
Smith, P.F.3
Wisbauer, R.4
-
5
-
-
3242666409
-
A rank two indecomposable projective module over a noetherian domain of krull dimension one
-
T.J. Hodges, J. Osterburg, A rank two indecomposable projective module over a Noetherian domain of Krull dimension one, Bull. London Math. Soc. 19 (1987) 139-144.
-
(1987)
Bull. London Math. Soc.
, vol.19
, pp. 139-144
-
-
Hodges, T.J.1
Osterburg, J.2
-
6
-
-
3242670945
-
Noetherian rings with big indecomposable projective modules
-
T.J. Hodges, J.T. Stafford, Noetherian rings with big indecomposable projective modules, Bull. London Math. Soc. 21 (1989) 249-254.
-
(1989)
Bull. London Math. Soc.
, vol.21
, pp. 249-254
-
-
Hodges, T.J.1
Stafford, J.T.2
-
7
-
-
0004218518
-
-
Lecture Notes in Math., Springer-Verlag, Berlin
-
T.Y. Lam, Serre's Conjecture, Lecture Notes in Math., Vol. 635, Springer-Verlag, Berlin, 1978.
-
(1978)
Serre's Conjecture
, vol.635
-
-
Lam, T.Y.1
-
9
-
-
84962980354
-
Projectives of large uniform-rank, in krull dimension 1
-
L.S. Levy, Projectives of large uniform-rank, in Krull dimension 1, Bull. London Math. Soc. 21 (1989) 57-64.
-
(1989)
Bull. London Math. Soc.
, vol.21
, pp. 57-64
-
-
Levy, L.S.1
-
10
-
-
0004234178
-
-
London Math. Soc. Lecture Note Series, Cambridge University Press, Cambridge
-
S.H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series, Vol. 147, Cambridge University Press, Cambridge, 1990.
-
(1990)
Continuous and Discrete Modules
, vol.147
-
-
Mohamed, S.H.1
Müller, B.J.2
-
11
-
-
0002188334
-
Modules for which every submodule has a unique closure
-
eds. S.K. Jain, S.T. Rizvi, World Scientific, Singapore
-
P.F. Smith, Modules for which every submodule has a unique closure, in: Ring Theory (Proc. Biennial Ohio State-Denison Conf., May 1992), eds. S.K. Jain, S.T. Rizvi, World Scientific, Singapore, 1993, pp. 302-313.
-
(1993)
Ring Theory (Proc. Biennial Ohio State-Denison Conf., May 1992)
, pp. 302-313
-
-
Smith, P.F.1
-
12
-
-
21144468684
-
Generalizations of CS-modules
-
P.F. Smith, A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (1993) 1809-1847.
-
(1993)
Comm. Algebra
, vol.21
, pp. 1809-1847
-
-
Smith, P.F.1
Tercan, A.2
|