-
14
-
-
33646656641
-
-
note
-
1H-NMR(DMSO): δ ppm 2.09(s, 6H), 7.15(t, 3H, J=2.7 Hz), 7.38(dd, 1H, J=1.2, 6.6 Hz), 7.52(dd, 1H, J=0.9, 6.8 Hz), 7.63(dd, 1H, J=0.9, 5.6 Hz), 7.82(dd, 2H, J=0.9, 7.5 Hz), 7.95(dd, 1H, J=1.2, 6.3 Hz), 8.05(dd, 1H, J=1.5, 8.0 Hz), 8.17(dd, 1H, J=1.5, 7.8 Hz), 8.25(dd, 1H, J=1.5, 8.1 Hz), 8.37(dd, 1H, J=1.5, 7.8 Hz), 8.69(d, 1H, J=7.8 Hz), 8.79(t, 3H, J=9.0 Hz), 9.48(dd, 1H, J=0.9, 5.6 Hz), 9.65(dd, 1H, J=0.9, 5.4 Hz)
-
-
-
-
18
-
-
0141704726
-
-
Pittsburgh, PA: Gaussian, Inc.
-
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A. Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03, Revision B.03. 2003;Gaussian, Inc., Pittsburgh, PA
-
(2003)
Gaussian 03, Revision B.03
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery Jr., J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Adamo, C.36
Jaramillo, J.37
Gomperts, R.38
Stratmann, R.E.39
Yazyev, O.40
Austin, A.J.41
Cammi, R.42
Pomelli, C.43
Ochterski, J.W.44
Ayala, P.Y.45
Morokuma, K.46
Voth, G.A.47
Salvador, P.48
Dannenberg, J.J.49
Zakrzewski, V.G.50
Dapprich, S.51
Daniels, A.D.52
Strain, M.C.53
Farkas, O.54
Malick, D.K.55
Rabuck, A.D.56
Raghavachari, K.57
Foresman, J.B.58
Ortiz, J.V.59
Cui, Q.60
Baboul, A.G.61
Clifford, S.62
Cioslowski, J.63
Stefanov, B.B.64
Liu, G.65
Liashenko, A.66
Piskorz, P.67
Komaromi, I.68
Martin, R.L.69
Fox, D.J.70
Keith, T.71
Al-Laham, M.A.72
Peng, C.Y.73
Nanayakkara, A.74
Challacombe, M.75
Gill, P.M.W.76
Johnson, B.77
Chen, W.78
Wong, M.W.79
Gonzalez, C.80
Pople, J.A.81
more..
-
19
-
-
11744322674
-
-
Andrae D., Hauessermann U., Dolg M., Stoll H., Preuss H. Theor. Chim. Acta. 77:1990;123-141
-
(1990)
Theor. Chim. Acta
, vol.77
, pp. 123-141
-
-
Andrae, D.1
Hauessermann, U.2
Dolg, M.3
Stoll, H.4
Preuss, H.5
-
25
-
-
33646648171
-
-
note
-
Geometry optimization in solvents was not achieved. Partial optimizations (change in distance of less than 0.001 Å and change in angles of less than 0.01°, followed by TD CPCM calculation produced excited-state energies that were not in better agreement with the experimental excited state energies than the excited state energies based on the gas phase optimized geometry
-
-
-
-
28
-
-
33646641406
-
-
The corrected CT energies y were obtained from the simulated CT energies x according to the equation y=2.65x-38100
-
The corrected CT energies y were obtained from the simulated CT energies x according to the equation y=2.65x-38100
-
-
-
-
29
-
-
33646663551
-
-
note
-
The CPCM is designed to account for the bulk physical properties of the solvent. It does not account for specific solvent-solute interactions. The TDDFT is known to perform well for the computing of CT excited states between closely spaced moieties. The tandem use of CPCM and TDDFT is currently the most suitable approach for description of solvent-induced shifts of the CT bands in transition metal complexes. Because the CPCM is not exact for specific solvent-solute interactions and there is no better theoretical model currently available for this effect, the correction is necessary
-
-
-
|