-
1
-
-
5844297152
-
Theory of reproducing kernels
-
MR 14:479c
-
Aronszajn, N. (1950). Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 337-404. MR 14:479c
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
2
-
-
85050895792
-
On the convergence rate of the component-by-component construction of good lattice rules
-
submitted
-
Dick, J. (2003). On the convergence rate of the component-by-component construction of good lattice rules, J. Complexity, submitted.
-
(2003)
J. Complexity
-
-
Dick, J.1
-
3
-
-
0003543733
-
-
Cambridge University Press, Cambridge
-
Hardy, G. H., Littlewood, J. E. and Pólya, G. (1934). Inequalities, Cambridge University Press, Cambridge.
-
(1934)
Inequalities
-
-
Hardy, G.H.1
Littlewood, J.E.2
Pólya, G.3
-
4
-
-
0037948486
-
Quasi-Monte Carlo methods and their randomizations
-
Applied Probability (R. Chan, Y.-K. Kwok, D. Yao, and Q Zhang, eds.), American Mathematical Society, Providence
-
Hickernell, F. J. and Hong, H. S. (2002). Quasi-Monte Carlo methods and their randomizations, Applied Probability (R. Chan, Y.-K. Kwok, D. Yao, and Q Zhang, eds.), AMS/IP Studies in Advanced Mathematics 26, American Mathematical Society, Providence, 59-77.
-
(2002)
AMS/IP Studies in Advanced Mathematics 26
, pp. 59-77
-
-
Hickernell, F.J.1
Hong, H.S.2
-
6
-
-
0012069553
-
Properties and calculation of optimal coefficients
-
Russian
-
Korobov, N. M. (1960). Properties and calculation of optimal coefficients, Doklady Akademii Nauk SSSR, 132, 1009-10 (Russian). English transl.: Soviet Mathematics Doklady, 1, 696-700. MR 22:11517
-
(1960)
Doklady Akademii Nauk SSSR
, vol.132
, pp. 1009-1010
-
-
Korobov, N.M.1
-
7
-
-
0000079859
-
-
English transl.: MR 22:11517
-
Korobov, N. M. (1960). Properties and calculation of optimal coefficients, Doklady Akademii Nauk SSSR, 132, 1009-10 (Russian). English transl.: Soviet Mathematics Doklady, 1, 696-700. MR 22:11517
-
Soviet Mathematics Doklady
, vol.1
, pp. 696-700
-
-
-
8
-
-
0038392447
-
Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces
-
Kuo, F. Y. (2003). Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces, J. Complexity, 19, 301-320.
-
(2003)
J. Complexity
, vol.19
, pp. 301-320
-
-
Kuo, F.Y.1
-
9
-
-
0036889417
-
Component-by-component construction of good lattice rules with a composite number of points
-
Kuo, F. Y. and Joe, S. (2002). Component-by-component construction of good lattice rules with a composite number of points, J. Complexity, 18, 943-976.
-
(2002)
J. Complexity
, vol.18
, pp. 943-976
-
-
Kuo, F.Y.1
Joe, S.2
-
10
-
-
0036790313
-
On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces
-
Sloan, I. H., Kuo, F. Y. and Joe, S. (2002). On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces, Math. Comp., 71, 1609-1640.
-
(2002)
Math. Comp.
, vol.71
, pp. 1609-1640
-
-
Sloan, I.H.1
Kuo, F.Y.2
Joe, S.3
-
11
-
-
0038624700
-
Constructing randomly shifted lattice rules in weighted Sobolev spaces
-
Sloan, I. H., Kuo, F. Y. and Joe, S. (2002). Constructing randomly shifted lattice rules in weighted Sobolev spaces, SIAM J. Numer. Anal., 40, 1650-1665.
-
(2002)
SIAM J. Numer. Anal.
, vol.40
, pp. 1650-1665
-
-
Sloan, I.H.1
Kuo, F.Y.2
Joe, S.3
-
12
-
-
0036003407
-
Component-by-component construction of good lattice points
-
MR 2002h:65028
-
Sloan, I. H., Retzsov, A. V. (2002). Component-by-component construction of good lattice points, Math. Comp., 71, 263-273. MR 2002h:65028
-
(2002)
Math. Comp.
, vol.71
, pp. 263-273
-
-
Sloan, I.H.1
Retzsov, A.V.2
-
13
-
-
0002522806
-
When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?
-
MR 99d:65384
-
Sloan, I. H. and Woźniakowski, H. (1998). When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?, J. Complexity, 14, 1-33. MR 99d:65384
-
(1998)
J. Complexity
, vol.14
, pp. 1-33
-
-
Sloan, I.H.1
Woźniakowski, H.2
-
14
-
-
0035700415
-
Tractability of multivariate integration for weighted Korobov classes
-
Sloan, I. H. and Woźniakowski, H. (2001). Tractability of multivariate integration for weighted Korobov classes, J. Complexity, 17, 697-721.
-
(2001)
J. Complexity
, vol.17
, pp. 697-721
-
-
Sloan, I.H.1
Woźniakowski, H.2
|