메뉴 건너뛰기




Volumn 58, Issue 5-6, 2004, Pages 657-681

Stability of constant steady states and existence of unbounded solutions in time to a reaction-diffusion equation modelling chemotaxis

Author keywords

Chemotaxis; Reaction diffusion equations; Stability of steady states; Unbounded solutions

Indexed keywords

BOUNDARY VALUE PROBLEMS; DIFFUSION; LYAPUNOV METHODS; MATHEMATICAL MODELS; NONLINEAR EQUATIONS; PROBLEM SOLVING; STEADY FLOW;

EID: 3242681596     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2003.11.014     Document Type: Article
Times cited : (5)

References (24)
  • 2
    • 0000657461 scopus 로고    scopus 로고
    • Local and global solvability of some parabolic systems modelling chemotaxis
    • Biler P. Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8:1998;715-743.
    • (1998) Adv. Math. Sci. Appl. , vol.8 , pp. 715-743
    • Biler, P.1
  • 3
    • 0019784884 scopus 로고
    • Nonlinear aspects of chemotaxis
    • Childress S., Percus J.K. Nonlinear aspects of chemotaxis. Math. Biosci. 56:1981;217-237.
    • (1981) Math. Biosci. , vol.56 , pp. 217-237
    • Childress, S.1    Percus, J.K.2
  • 5
    • 0032445844 scopus 로고    scopus 로고
    • Global behavior of a reaction-diffusion system modelling chemotaxis
    • Gajewski H., Zacharias K. Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195:1998;77-114.
    • (1998) Math. Nachr. , vol.195 , pp. 77-114
    • Gajewski, H.1    Zacharias, K.2
  • 6
    • 0010853645 scopus 로고    scopus 로고
    • Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis
    • Harada G., Nagai T., Senba T., Suzuki T. Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis. Adv. Differential Equations. 6:2001;1255-1280.
    • (2001) Adv. Differential Equations , vol.6 , pp. 1255-1280
    • Harada, G.1    Nagai, T.2    Senba, T.3    Suzuki, T.4
  • 7
    • 0003304963 scopus 로고
    • Geometric theory of semilinear parabolic equations
    • Berlin: Springer
    • Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Note in Mathematics. Vol. 840:1981;Springer, Berlin.
    • (1981) Lecture Note in Mathematics , vol.840
    • Henry, D.1
  • 8
    • 0030334089 scopus 로고    scopus 로고
    • Chemotaxis collapse for the Keller-Segel model
    • Herrero M.A., Velázquez J.J.L. Chemotaxis collapse for the Keller-Segel model. J. Math. Biol. 35:1996;177-194.
    • (1996) J. Math. Biol. , vol.35 , pp. 177-194
    • Herrero, M.A.1    Velázquez, J.J.L.2
  • 10
    • 0035646454 scopus 로고    scopus 로고
    • Blowup in a chemotaxis model without symmetry assumptions
    • Horstmann D., Wang G. Blowup in a chemotaxis model without symmetry assumptions. European J. Appl. Math. 12:2001;159-177.
    • (2001) European J. Appl. Math. , vol.12 , pp. 159-177
    • Horstmann, D.1    Wang, G.2
  • 11
    • 84966208077 scopus 로고
    • On explosions of solutions to a system of partial differential equations modelling chemotaxis
    • Jäger W., Luckhaus S. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329:1992;819-824.
    • (1992) Trans. Amer. Math. Soc. , vol.329 , pp. 819-824
    • Jäger, W.1    Luckhaus, S.2
  • 12
    • 0014748565 scopus 로고
    • Initiation of slime mold aggregation viewed as an instability
    • Keller E.F., Segel L.A. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26:1970;399-415.
    • (1970) J. Theoret. Biol. , vol.26 , pp. 399-415
    • Keller, E.F.1    Segel, L.A.2
  • 13
    • 0031162898 scopus 로고    scopus 로고
    • A system of reaction diffusion equations arising in the theory of reinforced random walks
    • Levine H.A., Sleeman B.D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57:1997;683-730.
    • (1997) SIAM J. Appl. Math. , vol.57 , pp. 683-730
    • Levine, H.A.1    Sleeman, B.D.2
  • 14
    • 0000911252 scopus 로고
    • Blow-up of radially symmetric solutions to a chemotaxis system
    • Nagai T. Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5:1995;581-601.
    • (1995) Adv. Math. Sci. Appl. , vol.5 , pp. 581-601
    • Nagai, T.1
  • 15
    • 0000687738 scopus 로고    scopus 로고
    • Chemotactic collapse in a parabolic system of mathematical biology
    • Nagai T., Senba T., Suzuki T. Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30:2000;463-497.
    • (2000) Hiroshima Math. J. , vol.30 , pp. 463-497
    • Nagai, T.1    Senba, T.2    Suzuki, T.3
  • 16
    • 0001205112 scopus 로고    scopus 로고
    • Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis
    • Nagai T., Senba T., Yoshida K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funckcial. Ekvac. 40:1997;411-433.
    • (1997) Funckcial. Ekvac. , vol.40 , pp. 411-433
    • Nagai, T.1    Senba, T.2    Yoshida, K.3
  • 17
    • 0015757937 scopus 로고
    • Chemotaxis, signal relaying, and aggregation morphology
    • Nanjundiah V. Chemotaxis, signal relaying, and aggregation morphology. J. Theoret. Biol. 42:1973;63-105.
    • (1973) J. Theoret. Biol. , vol.42 , pp. 63-105
    • Nanjundiah, V.1
  • 18
    • 0031207030 scopus 로고    scopus 로고
    • Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks
    • Othmer H.G., Stevens A. Aggregation, blowup, and collapse. the ABC's of taxis in reinforced random walks SIAM J. Appl. Math. 57:1997;1044-1081.
    • (1997) SIAM J. Appl. Math. , vol.57 , pp. 1044-1081
    • Othmer, H.G.1    Stevens, A.2
  • 20
    • 0000715275 scopus 로고
    • Sur un équation intégro-différentielle non linéaire issue de la biologie
    • Rascle M. Sur un équation intégro-différentielle non linéaire issue de la biologie. J. Differential Equations. 32:1979;420-453.
    • (1979) J. Differential Equations , vol.32 , pp. 420-453
    • Rascle, M.1
  • 21
    • 0001373727 scopus 로고
    • Stationary solutions of chemotaxis systems
    • Schaaf R. Stationary solutions of chemotaxis systems. Trans. Amer. Math. 292:1985;531-556.
    • (1985) Trans. Amer. Math. , vol.292 , pp. 531-556
    • Schaaf, R.1
  • 22
    • 0002819277 scopus 로고    scopus 로고
    • Chemotactic collapse in a parabolic-elliptic of mathematical biology
    • Senba T., Suzuki T. Chemotactic collapse in a parabolic-elliptic of mathematical biology. Adv. Differential Equations. 6:2001;21-50.
    • (2001) Adv. Differential Equations , vol.6 , pp. 21-50
    • Senba, T.1    Suzuki, T.2
  • 23
    • 0001544447 scopus 로고    scopus 로고
    • Some structures of the solution set for a stationary system of chemotaxis
    • Senba T., Suzuki T. Some structures of the solution set for a stationary system of chemotaxis. Adv. Math. Sci. Appl. 10:2000;191-224.
    • (2000) Adv. Math. Sci. Appl. , vol.10 , pp. 191-224
    • Senba, T.1    Suzuki, T.2
  • 24
    • 0035557011 scopus 로고    scopus 로고
    • On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis
    • Yang Y., Chen H., Liu W. On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM J. Math. Anal. 33:2001;763-785.
    • (2001) SIAM J. Math. Anal. , vol.33 , pp. 763-785
    • Yang, Y.1    Chen, H.2    Liu, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.