-
1
-
-
84914830669
-
p bounds of solutions of reaction-diffusion equations
-
p bounds of solutions of reaction-diffusion equations Comm. Partial Differential Equations. 4:1979;827-868.
-
(1979)
Comm. Partial Differential Equations
, vol.4
, pp. 827-868
-
-
Alikakos, N.D.1
-
2
-
-
0000657461
-
Local and global solvability of some parabolic systems modelling chemotaxis
-
Biler P. Local and global solvability of some parabolic systems modelling chemotaxis. Adv. Math. Sci. Appl. 8:1998;715-743.
-
(1998)
Adv. Math. Sci. Appl.
, vol.8
, pp. 715-743
-
-
Biler, P.1
-
3
-
-
0019784884
-
Nonlinear aspects of chemotaxis
-
Childress S., Percus J.K. Nonlinear aspects of chemotaxis. Math. Biosci. 56:1981;217-237.
-
(1981)
Math. Biosci.
, vol.56
, pp. 217-237
-
-
Childress, S.1
Percus, J.K.2
-
5
-
-
0032445844
-
Global behavior of a reaction-diffusion system modelling chemotaxis
-
Gajewski H., Zacharias K. Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195:1998;77-114.
-
(1998)
Math. Nachr.
, vol.195
, pp. 77-114
-
-
Gajewski, H.1
Zacharias, K.2
-
6
-
-
0010853645
-
Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis
-
Harada G., Nagai T., Senba T., Suzuki T. Concentration lemma, Brezis-Merle type inequality, and a parabolic system of chemotaxis. Adv. Differential Equations. 6:2001;1255-1280.
-
(2001)
Adv. Differential Equations
, vol.6
, pp. 1255-1280
-
-
Harada, G.1
Nagai, T.2
Senba, T.3
Suzuki, T.4
-
7
-
-
0003304963
-
Geometric theory of semilinear parabolic equations
-
Berlin: Springer
-
Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Note in Mathematics. Vol. 840:1981;Springer, Berlin.
-
(1981)
Lecture Note in Mathematics
, vol.840
-
-
Henry, D.1
-
8
-
-
0030334089
-
Chemotaxis collapse for the Keller-Segel model
-
Herrero M.A., Velázquez J.J.L. Chemotaxis collapse for the Keller-Segel model. J. Math. Biol. 35:1996;177-194.
-
(1996)
J. Math. Biol.
, vol.35
, pp. 177-194
-
-
Herrero, M.A.1
Velázquez, J.J.L.2
-
10
-
-
0035646454
-
Blowup in a chemotaxis model without symmetry assumptions
-
Horstmann D., Wang G. Blowup in a chemotaxis model without symmetry assumptions. European J. Appl. Math. 12:2001;159-177.
-
(2001)
European J. Appl. Math.
, vol.12
, pp. 159-177
-
-
Horstmann, D.1
Wang, G.2
-
11
-
-
84966208077
-
On explosions of solutions to a system of partial differential equations modelling chemotaxis
-
Jäger W., Luckhaus S. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329:1992;819-824.
-
(1992)
Trans. Amer. Math. Soc.
, vol.329
, pp. 819-824
-
-
Jäger, W.1
Luckhaus, S.2
-
12
-
-
0014748565
-
Initiation of slime mold aggregation viewed as an instability
-
Keller E.F., Segel L.A. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26:1970;399-415.
-
(1970)
J. Theoret. Biol.
, vol.26
, pp. 399-415
-
-
Keller, E.F.1
Segel, L.A.2
-
13
-
-
0031162898
-
A system of reaction diffusion equations arising in the theory of reinforced random walks
-
Levine H.A., Sleeman B.D. A system of reaction diffusion equations arising in the theory of reinforced random walks. SIAM J. Appl. Math. 57:1997;683-730.
-
(1997)
SIAM J. Appl. Math.
, vol.57
, pp. 683-730
-
-
Levine, H.A.1
Sleeman, B.D.2
-
14
-
-
0000911252
-
Blow-up of radially symmetric solutions to a chemotaxis system
-
Nagai T. Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5:1995;581-601.
-
(1995)
Adv. Math. Sci. Appl.
, vol.5
, pp. 581-601
-
-
Nagai, T.1
-
15
-
-
0000687738
-
Chemotactic collapse in a parabolic system of mathematical biology
-
Nagai T., Senba T., Suzuki T. Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30:2000;463-497.
-
(2000)
Hiroshima Math. J.
, vol.30
, pp. 463-497
-
-
Nagai, T.1
Senba, T.2
Suzuki, T.3
-
16
-
-
0001205112
-
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis
-
Nagai T., Senba T., Yoshida K. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funckcial. Ekvac. 40:1997;411-433.
-
(1997)
Funckcial. Ekvac.
, vol.40
, pp. 411-433
-
-
Nagai, T.1
Senba, T.2
Yoshida, K.3
-
17
-
-
0015757937
-
Chemotaxis, signal relaying, and aggregation morphology
-
Nanjundiah V. Chemotaxis, signal relaying, and aggregation morphology. J. Theoret. Biol. 42:1973;63-105.
-
(1973)
J. Theoret. Biol.
, vol.42
, pp. 63-105
-
-
Nanjundiah, V.1
-
18
-
-
0031207030
-
Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks
-
Othmer H.G., Stevens A. Aggregation, blowup, and collapse. the ABC's of taxis in reinforced random walks SIAM J. Appl. Math. 57:1997;1044-1081.
-
(1997)
SIAM J. Appl. Math.
, vol.57
, pp. 1044-1081
-
-
Othmer, H.G.1
Stevens, A.2
-
20
-
-
0000715275
-
Sur un équation intégro-différentielle non linéaire issue de la biologie
-
Rascle M. Sur un équation intégro-différentielle non linéaire issue de la biologie. J. Differential Equations. 32:1979;420-453.
-
(1979)
J. Differential Equations
, vol.32
, pp. 420-453
-
-
Rascle, M.1
-
21
-
-
0001373727
-
Stationary solutions of chemotaxis systems
-
Schaaf R. Stationary solutions of chemotaxis systems. Trans. Amer. Math. 292:1985;531-556.
-
(1985)
Trans. Amer. Math.
, vol.292
, pp. 531-556
-
-
Schaaf, R.1
-
22
-
-
0002819277
-
Chemotactic collapse in a parabolic-elliptic of mathematical biology
-
Senba T., Suzuki T. Chemotactic collapse in a parabolic-elliptic of mathematical biology. Adv. Differential Equations. 6:2001;21-50.
-
(2001)
Adv. Differential Equations
, vol.6
, pp. 21-50
-
-
Senba, T.1
Suzuki, T.2
-
23
-
-
0001544447
-
Some structures of the solution set for a stationary system of chemotaxis
-
Senba T., Suzuki T. Some structures of the solution set for a stationary system of chemotaxis. Adv. Math. Sci. Appl. 10:2000;191-224.
-
(2000)
Adv. Math. Sci. Appl.
, vol.10
, pp. 191-224
-
-
Senba, T.1
Suzuki, T.2
-
24
-
-
0035557011
-
On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis
-
Yang Y., Chen H., Liu W. On existence of global solutions and blow-up to a system of reaction-diffusion equations modelling chemotaxis. SIAM J. Math. Anal. 33:2001;763-785.
-
(2001)
SIAM J. Math. Anal.
, vol.33
, pp. 763-785
-
-
Yang, Y.1
Chen, H.2
Liu, W.3
|