메뉴 건너뛰기




Volumn , Issue , 2005, Pages 238-244

Admission control to minimize rejections and online set cover with repetitions

Author keywords

Admission control; Competitive; On line; Set Cover

Indexed keywords

ALGORITHMS; POLYNOMIALS; SET THEORY;

EID: 32144457903     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1073970.1074010     Document Type: Conference Paper
Times cited : (11)

References (14)
  • 1
    • 0242514378 scopus 로고    scopus 로고
    • Beating the logarithmic lower bound: Randomized preemptive disjoint paths and call control algorithms
    • R. Adler and Y. Azar. Beating the logarithmic lower bound: randomized preemptive disjoint paths and call control algorithms. Journal of Scheduling, 6:113-129, 2003.
    • (2003) Journal of Scheduling , vol.6 , pp. 113-129
    • Adler, R.1    Azar, Y.2
  • 10
    • 84958051380 scopus 로고    scopus 로고
    • Admission control to minimize rejections
    • Proceedings of WADS 2001
    • A. Blum, A. Kalai, and J. Kleinberg. Admission control to minimize rejections. In Proceedings of WADS 2001; LNCS 2125, pages 155-164, 2001.
    • (2001) LNCS , vol.2125 , pp. 155-164
    • Blum, A.1    Kalai, A.2    Kleinberg, J.3
  • 12
    • 0000301097 scopus 로고
    • A greedy heuristic for the set-covering problem
    • V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 4(3):233-235, 1979.
    • (1979) Mathematics of Operations Research , vol.4 , Issue.3 , pp. 233-235
    • Chvátal, V.1
  • 13
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of 1n n for approximating set cover
    • July
    • U. Feige. A threshold of 1n n for approximating set cover. Journal of the ACM, 45(4):634-652, July 1998.
    • (1998) Journal of the ACM , vol.45 , Issue.4 , pp. 634-652
    • Feige, U.1
  • 14
    • 32144452875 scopus 로고    scopus 로고
    • Personal communication
    • U. Feige and S. Korman. Personal communication.
    • Feige, U.1    Korman, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.