메뉴 건너뛰기




Volumn 343, Issue 2, 2006, Pages 125-136

Multi-layer self-organizing polynomial neural networks and their development with the use of genetic algorithms

Author keywords

Genetic algorithms; GMDH; Multi layer perceptron; Polynomial neuron; Self organizing polynomial neural networks

Indexed keywords

CHAOS THEORY; DATA HANDLING; GALLIUM; GENETIC ALGORITHMS; MATHEMATICAL MODELS; OPTIMIZATION; PARAMETER ESTIMATION; POLYNOMIALS; QUADRATIC PROGRAMMING; SET THEORY;

EID: 31944440748     PISSN: 00160032     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfranklin.2005.09.005     Document Type: Article
Times cited : (10)

References (14)
  • 1
  • 3
    • 0036529715 scopus 로고    scopus 로고
    • The design of self-organizing polynomial neural networks
    • S.-K. Oh, and W. Pedrycz The design of self-organizing polynomial neural networks Inform. Sci. 141 2002 237 258
    • (2002) Inform. Sci. , vol.141 , pp. 237-258
    • Oh, S.-K.1    Pedrycz, W.2
  • 4
    • 0038722717 scopus 로고    scopus 로고
    • Polynomial neural networks architecture: Analysis and design
    • S.-K. Oh, W. Pedrycz, and B.-J. Park Polynomial neural networks architecture: analysis and design Comput. Electr. Eng. 29 6 2003 703 725
    • (2003) Comput. Electr. Eng. , vol.29 , Issue.6 , pp. 703-725
    • Oh, S.-K.1    Pedrycz, W.2    Park, B.-J.3
  • 5
    • 0034300570 scopus 로고    scopus 로고
    • Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems
    • S.-K. Oh, and W. Pedrycz Identification of fuzzy systems by means of an auto-tuning algorithm and its application to nonlinear systems Fuzzy sets Syst. 115 2 2000 205 230
    • (2000) Fuzzy Sets Syst. , vol.115 , Issue.2 , pp. 205-230
    • Oh, S.-K.1    Pedrycz, W.2
  • 6
    • 0026943536 scopus 로고
    • Generating fuzzy rules from numerical data with applications
    • L.X. Wang, and J.M. Mendel Generating fuzzy rules from numerical data with applications IEEE Trans. Syst. Man Cybern. 22 6 1992 1414 1427
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 7
    • 0003645482 scopus 로고
    • Non-linear signal processing using neural networks: Prediction and system modeling
    • Los Alamos National Laboratory, Los Alamos, New Mexico
    • A.S. Lapedes, R. Farber, Non-linear signal processing using neural networks: prediction and system modeling, Technical report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, New Mexico, 1987.
    • (1987) Technical Report , vol.LA-UR-87-2662
    • Lapedes, A.S.1    Farber, R.2
  • 8
    • 0003093755 scopus 로고
    • Predicting the Mackey-glass time series with cascade-correlation learning
    • D. Touretzky, G. Hinton, T. Sejnowski (Eds.) Carnegic Mellon University
    • R.S. Crowder Jr., Predicting the Mackey-Glass time series with cascade-correlation learning, in: D. Touretzky, G. Hinton, T. Sejnowski (Eds.), Proceedings of the 1990 Connectionist Models Summer School, Carnegic Mellon University, 1990, pp. 117-123.
    • (1990) Proceedings of the 1990 Connectionist Models Summer School , pp. 117-123
    • Crowder Jr., R.S.1
  • 9
    • 0040949854 scopus 로고    scopus 로고
    • Automatic structure and parameter training methods for modeling of mechanical systems by recurrent neural networks
    • C. James Li, and T.-Y. Huang Automatic structure and parameter training methods for modeling of mechanical systems by recurrent neural networks Appl. Math. Modeling 23 1999 933 944
    • (1999) Appl. Math. Modeling , vol.23 , pp. 933-944
    • James Li, C.1    Huang, T.-Y.2
  • 10
    • 0032301756 scopus 로고    scopus 로고
    • Predicting a chaotic time series using a fuzzy neural network
    • L.P. Maguire, B. Roche, T.M. McGinnity, and L.J. McDaid Predicting a chaotic time series using a fuzzy neural network Inform. Sci. 112 1998 125 136
    • (1998) Inform. Sci. , vol.112 , pp. 125-136
    • Maguire, L.P.1    Roche, B.2    McGinnity, T.M.3    McDaid, L.J.4
  • 11
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • J.S.R. Jang ANFIS: adaptive-network-based fuzzy inference system IEEE Trans. Syst. Man Cybern. 23 3 1993 665 685
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 13
    • 0008089137 scopus 로고
    • Are genetic algorithms function optimizers?
    • R. Manner B. Manderick North-Holland Amsterdam
    • K.A. De Jong Are genetic algorithms function optimizers? R. Manner B. Manderick Parallel Problem Solving from Nature 2 1992 North-Holland Amsterdam 3 13
    • (1992) Parallel Problem Solving from Nature 2 , pp. 3-13
    • De Jong, K.A.1
  • 14
    • 4544361988 scopus 로고    scopus 로고
    • Rule-based fuzzy polynomial neural networks in modeling software process data
    • Byoung-Jun Park, Dong-Yoon Lee, and Sung-Kwun Oh Rule-based fuzzy polynomial neural networks in modeling software process data Int. J. Control. Automat. Syst. 1 3 2003 321 331
    • (2003) Int. J. Control. Automat. Syst. , vol.1 , Issue.3 , pp. 321-331
    • Byoung-Jun, P.1    Dong-Yoon, L.2    Sung-Kwun, O.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.