메뉴 건너뛰기




Volumn 31, Issue 2, 2006, Pages 293-306

Improved geometric conditions for non-blowup of the 3D incompressible Euler equation

Author keywords

3D Euler equations; Finite time blowup; Geometric properties; Global existence

Indexed keywords


EID: 31744438053     PISSN: 03605302     EISSN: None     Source Type: Journal    
DOI: 10.1080/03605300500358152     Document Type: Article
Times cited : (63)

References (18)
  • 1
    • 0012408816 scopus 로고    scopus 로고
    • 3D Navier-stokes and Euler equations with initial data characterized by uniformly large vorticity
    • Babin, A., Mahalov, A., Nicolaenko, B. (2001). 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J. 50(1): 1-35.
    • (2001) Indiana Univ. Math. J. , vol.50 , Issue.1 , pp. 1-35
    • Babin, A.1    Mahalov, A.2    Nicolaenko, B.3
  • 2
    • 34250136481 scopus 로고
    • Remarks on the breakdown of smooth solutions for the 3D Euler equations
    • Beale, J. T., Kato, T., Majda, A. (1984). Remarks on the breakdown of smooth solutions for the 3D Euler equations. Comm. Math. Phys. 94:61-66.
    • (1984) Comm. Math. Phys. , vol.94 , pp. 61-66
    • Beale, J.T.1    Kato, T.2    Majda, A.3
  • 3
    • 43949163593 scopus 로고
    • Singularity formation for complex solutions of the 3D incompressible Euler equations
    • Caflisch, R. E. (1993). Singularity formation for complex solutions of the 3D incompressible Euler equations. Physica D 67:1-18.
    • (1993) Physica D , vol.67 , pp. 1-18
    • Caflisch, R.E.1
  • 5
    • 0000385525 scopus 로고    scopus 로고
    • Geometric constraints on potentially singular solutions for the 3D Euler equation
    • Constantin, P., Fefferman, C., Majda, A. (1996). Geometric constraints on potentially singular solutions for the 3D Euler equation. Comm. PDE 21:559-571.
    • (1996) Comm. PDE , vol.21 , pp. 559-571
    • Constantin, P.1    Fefferman, C.2    Majda, A.3
  • 6
    • 0035538229 scopus 로고    scopus 로고
    • On the collapse of tubes carried by 3D incompressible flows
    • Cordoba, D., Fefferman, C. (2001). On the collapse of tubes carried by 3D incompressible flows. Comm. Math. Phys. 222(2):293-298.
    • (2001) Comm. Math. Phys. , vol.222 , Issue.2 , pp. 293-298
    • Cordoba, D.1    Fefferman, C.2
  • 7
    • 17444395218 scopus 로고    scopus 로고
    • Geometric properties and non-blowup of 3D incompressible Euler flow
    • Deng, J., Hou, T. Y., Yu, X. (2004). Geometric properties and non-blowup of 3D incompressible Euler flow. Comm PDE 30(2):225-243.
    • (2004) Comm PDE , vol.30 , Issue.2 , pp. 225-243
    • Deng, J.1    Hou, T.Y.2    Yu, X.3
  • 8
    • 0001052255 scopus 로고
    • Groups of diffeomorphisms and the motion of an incompressible fluid
    • Ebin, D. G., Marsden, J. E. (1970). Groups of diffeomorphisms and the motion of an incompressible fluid. Am. Math. 92:102-163.
    • (1970) Am. Math. , vol.92 , pp. 102-163
    • Ebin, D.G.1    Marsden, J.E.2
  • 10
    • 0001345823 scopus 로고    scopus 로고
    • Adaptive mesh refinement for singular solutions of the incompressible Euler equations
    • Grauer, R., Marliani, C., Germaschewski, K. (1998). Adaptive mesh refinement for singular solutions of the incompressible Euler equations. Phys. Rev. Letters 80(19).
    • (1998) Phys. Rev. Letters , vol.80 , Issue.19
    • Grauer, R.1    Marliani, C.2    Germaschewski, K.3
  • 11
    • 0027454950 scopus 로고
    • Evidence for a singularity of the three-dimensional incompressible Euler equations
    • Kerr, R. M. (1993). Evidence for a singularity of the three-dimensional incompressible Euler equations. Phys. Fluids A 5:1725-1746.
    • (1993) Phys. Fluids A , vol.5 , pp. 1725-1746
    • Kerr, R.M.1
  • 12
    • 17444374713 scopus 로고
    • The role of singularities in Euler
    • Pouquet, A., Sulem, P. L., eds Lecture Notes, Springer-Verlag.
    • Kerr, R. M. (1995). The role of singularities in Euler. In: Pouquet, A., Sulem, P. L., eds. Small-Scale Structure in Hydro and Magnetohydrodynamic Turbulence. Lecture Notes, Springer-Verlag.
    • (1995) Small-scale Structure in Hydro and Magnetohydrodynamic Turbulence
    • Kerr, R.M.1
  • 13
    • 17444397163 scopus 로고    scopus 로고
    • Cover illustration: Vortex structure of Euler collapse
    • Kerr, R. M. (1996). Cover illustration: vortex structure of Euler collapse. Nonlinearity 9:271-272.
    • (1996) Nonlinearity , vol.9 , pp. 271-272
    • Kerr, R.M.1
  • 14
    • 17444392558 scopus 로고    scopus 로고
    • Euler singularities and turbulence
    • Tatsumi, T., Watanabe, E., Kambe, T., eds Elsevier Science
    • Kerr, R. M. (1997). Euler singularities and turbulence. In: Tatsumi, T., Watanabe, E., Kambe, T., eds. 19th ICTAM Kyoto' 96. Elsevier Science.
    • (1997) 19th ICTAM Kyoto' 96
    • Kerr, R.M.1
  • 15
    • 18844404792 scopus 로고    scopus 로고
    • The outer regions in singular euler
    • Tsinober, Gyr., ed Boston: Birkhäuser
    • Kerr, R. M. (1998). The outer regions in singular euler. In: Tsinober, Gyr., ed. Fundamental Problematic Issues in Turbulence. Boston: Birkhäuser.
    • (1998) Fundamental Problematic Issues in Turbulence
    • Kerr, R.M.1
  • 16
    • 0034348203 scopus 로고    scopus 로고
    • Limiting case of the Sobolev inequality in BMO, with application to the Euler equations
    • Kozono, H., Taniuchi, Y. (2000). Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm. Math. Phys. 214:191-200.
    • (2000) Comm. Math. Phys. , vol.214 , pp. 191-200
    • Kozono, H.1    Taniuchi, Y.2
  • 17
    • 0035840925 scopus 로고    scopus 로고
    • Symmetry and the hydrodynamic blow-up problem
    • Pelz, R. B. (2001). Symmetry and the hydrodynamic blow-up problem. J. Fluid Mech. 444:299-320.
    • (2001) J. Fluid Mech. , vol.444 , pp. 299-320
    • Pelz, R.B.1
  • 18
    • 0035343982 scopus 로고    scopus 로고
    • On a new scale of regularity spaces with applications to Euler's equations
    • Tadmor, E. (2001). On a new scale of regularity spaces with applications to Euler's equations. Nonlinearity 14:513-532.
    • (2001) Nonlinearity , vol.14 , pp. 513-532
    • Tadmor, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.