메뉴 건너뛰기




Volumn 232, Issue 2, 2006, Pages 390-454

Variational solutions for partial differential equations driven by a fractional noise

Author keywords

Fractional stochastic partial differential equations; Variational solutions

Indexed keywords


EID: 31744433902     PISSN: 00221236     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfa.2005.06.015     Document Type: Article
Times cited : (39)

References (53)
  • 2
    • 0000338690 scopus 로고    scopus 로고
    • Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2
    • E. Alòs O. Mazet D. Nualart Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 Stochastic Process. Appl. 86 2000 121-139
    • (2000) Stochastic Process. Appl. , vol.86 , pp. 121-139
    • Alòs, E.1    Mazet, O.2    Nualart, D.3
  • 3
    • 0035537291 scopus 로고    scopus 로고
    • Stochastic calculus with respect to Gaussian processes
    • E. Alòs O. Mazet D. Nualart Stochastic calculus with respect to Gaussian processes Ann. Probab. 29 2001 766-801
    • (2001) Ann. Probab. , vol.29 , pp. 766-801
    • Alòs, E.1    Mazet, O.2    Nualart, D.3
  • 4
    • 0346718762 scopus 로고    scopus 로고
    • Stochastic integration with respect to the fractional Brownian motion
    • E. Alòs D. Nualart Stochastic integration with respect to the fractional Brownian motion Stochastics Stochastics Rep. 75 2003 129-152
    • (2003) Stochastics Stochastics Rep. , vol.75 , pp. 129-152
    • Alòs, E.1    Nualart, D.2
  • 5
    • 0001181333 scopus 로고    scopus 로고
    • On the behavior of solutions to certain parabolic SPDE's driven by Wiener processes
    • B. Bergé I.D. Chueshov P.-A. Vuillermot On the behavior of solutions to certain parabolic SPDE's driven by Wiener processes Stochastic Processes Appl. 92 2001 237-263
    • (2001) Stochastic Processes Appl. , vol.92 , pp. 237-263
    • Bergé, B.1    Chueshov, I.D.2    Vuillermot, P.-A.3
  • 6
    • 0037270163 scopus 로고    scopus 로고
    • Stochastic integration with respect to fractional Brownian motion
    • P. Carmona L. Coutin G. Montseny Stochastic integration with respect to fractional Brownian motion Ann. Inst. H. Poincaré-PR 39 2003 27-68
    • (2003) Ann. Inst. H. Poincaré-PR , vol.39 , pp. 27-68
    • Carmona, P.1    Coutin, L.2    Montseny, G.3
  • 7
    • 0032187776 scopus 로고    scopus 로고
    • Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case
    • I.D. Chueshov P.-A. Vuillermot Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Stratonovitch's case Probab. Theory Related Fields 112 1998 149-202
    • (1998) Probab. Theory Related Fields , vol.112 , pp. 149-202
    • Chueshov, I.D.1    Vuillermot, P.-A.2
  • 8
    • 0034342828 scopus 로고    scopus 로고
    • Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case
    • I.D. Chueshov P.-A. Vuillermot Long-time behavior of solutions to a class of stochastic parabolic equations with homogeneous white noise: Itô's case Stochastic Anal. Appl. 18 2000 581-615
    • (2000) Stochastic Anal. Appl. , vol.18 , pp. 581-615
    • Chueshov, I.D.1    Vuillermot, P.-A.2
  • 9
    • 8344259011 scopus 로고    scopus 로고
    • Non random invariant sets for some systems of parabolic stochastic partial differential equations
    • I.D. Chueshov P.-A. Vuillermot Non random invariant sets for some systems of parabolic stochastic partial differential equations Stochastic Anal. Appl. 22 2004 1421-1486
    • (2004) Stochastic Anal. Appl. , vol.22 , pp. 1421-1486
    • Chueshov, I.D.1    Vuillermot, P.-A.2
  • 10
    • 0032356952 scopus 로고    scopus 로고
    • Long memory in continuous time volatility models
    • F. Comte E. Renault Long memory in continuous time volatility models Math. Finance 8 1998 291-323
    • (1998) Math. Finance , vol.8 , pp. 291-323
    • Comte, F.1    Renault, E.2
  • 11
    • 0036002985 scopus 로고    scopus 로고
    • Stochastic analysis, rough path analysis and fractional Brownian motions
    • L. Coutin Z. Qian Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Related Fields 122 2002 108-140
    • (2002) Probab. Theory Related Fields , vol.122 , pp. 108-140
    • Coutin, L.1    Qian, Z.2
  • 13
    • 53349108011 scopus 로고    scopus 로고
    • Itô's formula with respect to fractional Brownian motion and its application
    • W. Dai C.C. Heyde Itô's formula with respect to fractional Brownian motion and its application J. Appl. Math. Stochastic Anal. 9 1996 439-448
    • (1996) J. Appl. Math. Stochastic Anal. , vol.9 , pp. 439-448
    • Dai, W.1    Heyde, C.C.2
  • 15
    • 0038729612 scopus 로고    scopus 로고
    • Stochastic integration with respect to Gaussian processes
    • L. Decreusefond Stochastic integration with respect to Gaussian processes C. R. Acad. Sci. Paris, Ser. I 334 2002 903-908
    • (2002) C. R. Acad. Sci. Paris, Ser. I , vol.334 , pp. 903-908
    • Decreusefond, L.1
  • 16
    • 0042637937 scopus 로고    scopus 로고
    • Stochastic analysis of the fractional Brownian motion
    • L. Decreusefond A.S. Üstünel Stochastic analysis of the fractional Brownian motion Potential Anal. 10 1999 177-214
    • (1999) Potential Anal. , vol.10 , pp. 177-214
    • Decreusefond, L.1    Üstünel, A.S.2
  • 17
    • 0033878593 scopus 로고    scopus 로고
    • Stochastic calculus for fractional Brownian motion I. Theory
    • T.E. Duncan Y. Hu B. Pasik-Duncan Stochastic calculus for fractional Brownian motion I. Theory SIAM J. Control Optim. 38 2000 582-612
    • (2000) SIAM J. Control Optim. , vol.38 , pp. 582-612
    • Duncan, T.E.1    Hu, Y.2    Pasik-Duncan, B.3
  • 18
    • 0043071630 scopus 로고    scopus 로고
    • Fractional Brownian motion and stochastic equations in Hilbert spaces
    • T.E. Duncan B. Maslowski B. Pasik-Duncan Fractional Brownian motion and stochastic equations in Hilbert spaces Stochastics Dyn. 2 2002 225-250
    • (2002) Stochastics Dyn. , vol.2 , pp. 225-250
    • Duncan, T.E.1    Maslowski, B.2    Pasik-Duncan, B.3
  • 22
    • 0033556963 scopus 로고    scopus 로고
    • A parabolic stochastic differential equation with fractional Brownian motion input
    • W. Grecksch V.V. Anh A parabolic stochastic differential equation with fractional Brownian motion input Statist. Probab. Lett. 41 1999 337-346
    • (1999) Statist. Probab. Lett. , vol.41 , pp. 337-346
    • Grecksch, W.1    Anh, V.V.2
  • 23
    • 31744436224 scopus 로고    scopus 로고
    • Young integrals and SPDE's
    • IECN-Preprint
    • Gubinelli, M., Lejay, A., Tindel, S., Young integrals and SPDE's, IECN-Preprint, 33, 2004.
    • (2004) , vol.33
    • Gubinelli, M.1    Lejay, A.2    Tindel, S.3
  • 25
    • 0001059286 scopus 로고    scopus 로고
    • Heat equations with fractional white noise potentials
    • Y. Hu Heat equations with fractional white noise potentials Appl. Math. Optim. 43 2001 221-243
    • (2001) Appl. Math. Optim. , vol.43 , pp. 221-243
    • Hu, Y.1
  • 26
    • 0036267644 scopus 로고    scopus 로고
    • Probability structure preserving and absolute continuity
    • Y. Hu Probability structure preserving and absolute continuity Ann. I. H. Poincaré-PR 38 2002 557-580
    • (2002) Ann. I. H. Poincaré-PR , vol.38 , pp. 557-580
    • Hu, Y.1
  • 28
    • 0008562738 scopus 로고    scopus 로고
    • Existence and uniqueness theorems for fBm stochastic differential equations
    • M.L. Kleptsyna P.E. Kloeden V.V. Anh Existence and uniqueness theorems for fBm stochastic differential equations Problems Inform. Transmission 34 1999 332-341
    • (1999) Problems Inform. Transmission , vol.34 , pp. 332-341
    • Kleptsyna, M.L.1    Kloeden, P.E.2    Anh, V.V.3
  • 29
    • 22644449415 scopus 로고    scopus 로고
    • Ordinary differential equations with fractal noise
    • F. Klingenhöfer M. Zähle Ordinary differential equations with fractal noise Proc. Amer. Math. Soc. 127 1999 1021-1028
    • (1999) Proc. Amer. Math. Soc. , vol.127 , pp. 1021-1028
    • Klingenhöfer, F.1    Zähle, M.2
  • 30
    • 34250236571 scopus 로고
    • Stochastic evolution equations
    • N.V. Krylov B.L. Rozovskii Stochastic evolution equations J. Sov. Math. 16 1981 1233-1277
    • (1981) J. Sov. Math. , vol.16 , pp. 1233-1277
    • Krylov, N.V.1    Rozovskii, B.L.2
  • 31
    • 0008562739 scopus 로고    scopus 로고
    • The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion
    • K. Kubilius The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion Lith. Math. J. 40 2000 104-110
    • (2000) Lith. Math. J. , vol.40 , pp. 104-110
    • Kubilius, K.1
  • 32
    • 0000746261 scopus 로고
    • Stochastic analysis of fractional Brownian motions
    • S.J. Lin Stochastic analysis of fractional Brownian motions Stochastics Stochastics Rep. 55 1995 121-140
    • (1995) Stochastics Stochastics Rep. , vol.55 , pp. 121-140
    • Lin, S.J.1
  • 35
    • 0032347402 scopus 로고    scopus 로고
    • Differential equations driven by rough signals
    • T. Lyons Differential equations driven by rough signals Rev. Mat. Iberoam. 14 1998 215-310
    • (1998) Rev. Mat. Iberoam. , vol.14 , pp. 215-310
    • Lyons, T.1
  • 37
    • 0000501589 scopus 로고
    • Fractional Brownian motions, fractional noises and applications
    • B.B. Mandelbrot J.W. Van Ness Fractional Brownian motions, fractional noises and applications SIAM Rev. 10 1968 422-437
    • (1968) SIAM Rev. , vol.10 , pp. 422-437
    • Mandelbrot, B.B.1    Van Ness, J.W.2
  • 38
    • 0042229456 scopus 로고    scopus 로고
    • Evolution equations driven by a fractional Brownian motion
    • B. Maslowski D. Nualart Evolution equations driven by a fractional Brownian motion J. Funct. Anal. 202 2003 277-305
    • (2003) J. Funct. Anal. , vol.202 , pp. 277-305
    • Maslowski, B.1    Nualart, D.2
  • 40
    • 0038771348 scopus 로고    scopus 로고
    • Differential equations driven by fractional Brownian motion
    • D. Nualart A. Rǎşcanu Differential equations driven by fractional Brownian motion Collect. Math. 53 2002 55-81
    • (2002) Collect. Math. , vol.53 , pp. 55-81
    • Nualart, D.1    Rǎşcanu, A.2
  • 41
    • 13844321593 scopus 로고    scopus 로고
    • Variational solutions for a class of fractional stochastic partial differential equations
    • D. Nualart P.-A. Vuillermot Variational solutions for a class of fractional stochastic partial differential equations C. R. Acad. Sci. Paris, Ser. I 340 2005 281-286
    • (2005) C. R. Acad. Sci. Paris, Ser. I , vol.340 , pp. 281-286
    • Nualart, D.1    Vuillermot, P.-A.2
  • 44
    • 0034562433 scopus 로고    scopus 로고
    • Integration questions related to fractional Brownian motion
    • V. Pipiras M.S. Taqqu Integration questions related to fractional Brownian motion Probab. Theory Related Fields 118 2000 251-291
    • (2000) Probab. Theory Related Fields , vol.118 , pp. 251-291
    • Pipiras, V.1    Taqqu, M.S.2
  • 45
    • 33750073208 scopus 로고    scopus 로고
    • Are classes of deterministic integrands for fractional Brownian motion on an interval complete?
    • V. Pipiras M.S. Taqqu Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli 7 2001 873-897
    • (2001) Bernoulli , vol.7 , pp. 873-897
    • Pipiras, V.1    Taqqu, M.S.2
  • 46
    • 0031540977 scopus 로고    scopus 로고
    • Arbitrage with fractional Brownian motion
    • L.C.G. Roger Arbitrage with fractional Brownian motion Math. Finance 7 1997 95-105
    • (1997) Math. Finance , vol.7 , pp. 95-105
    • Roger, L.C.G.1
  • 47
    • 0003598080 scopus 로고
    • Fractional Integrals and Derivatives. Theory and Applications
    • New York: Gordon and Breach
    • S.G. Samko A.A. Kilbas O.I. Marichev Fractional Integrals and Derivatives. Theory and Applications 1993 Gordon and Breach New York
    • (1993)
    • Samko, S.G.1    Kilbas, A.A.2    Marichev, O.I.3
  • 48
    • 0037567625 scopus 로고    scopus 로고
    • Equivalence and Hölder-Sobolev regularity of solutions for a class of non autonomous stochastic partial differential equations
    • M. Sanz-Solé P.-A. Vuillermot Equivalence and Hölder-Sobolev regularity of solutions for a class of non autonomous stochastic partial differential equations Ann. I.H. Poincaré 39 2003 703-742
    • (2003) Ann. I.H. Poincaré , vol.39 , pp. 703-742
    • Sanz-Solé, M.1    Vuillermot, P.-A.2
  • 50
    • 0040433361 scopus 로고    scopus 로고
    • Path-wise solutions of stochastic differential equations driven by Lévy processes
    • D.R.E. Williams Path-wise solutions of stochastic differential equations driven by Lévy processes Rev. Mat. Iberoam. 17 2001 295-329
    • (2001) Rev. Mat. Iberoam. , vol.17 , pp. 295-329
    • Williams, D.R.E.1
  • 51
    • 0000821514 scopus 로고
    • An inequality of the Hölder type connected with Stieltjes integration
    • L.C. Young An inequality of the Hölder type connected with Stieltjes integration Acta Math. 67 1936 251-282
    • (1936) Acta Math. , vol.67 , pp. 251-282
    • Young, L.C.1
  • 52
    • 0038290919 scopus 로고    scopus 로고
    • Integration with respect to fractal functions and stochastic calculus. I
    • M. Zähle Integration with respect to fractal functions and stochastic calculus. I Probab. Theory Related Fields 111 1998 333-374
    • (1998) Probab. Theory Related Fields , vol.111 , pp. 333-374
    • Zähle, M.1
  • 53
    • 0041026849 scopus 로고    scopus 로고
    • Integration with respect to fractal functions and stochastic calculus. II
    • M. Zähle Integration with respect to fractal functions and stochastic calculus. II Math. Nachr. 225 2001 145-183
    • (2001) Math. Nachr. , vol.225 , pp. 145-183
    • Zähle, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.