-
1
-
-
0029195711
-
Least squares degree reduction of Bézier curves
-
Eck M (1995) Least squares degree reduction of Bézier curves. Comput Aided Des 27(11):845-861
-
(1995)
Comput Aided des
, vol.27
, Issue.11
, pp. 845-861
-
-
Eck, M.1
-
2
-
-
0000846201
-
Properties of two types of generalized Ball curves
-
Hu SM, Wang GZ, Jin TG (1996) Properties of two types of generalized Ball curves. Comput Aided Des 28(2): 125-133
-
(1996)
Comput Aided des
, vol.28
, Issue.2
, pp. 125-133
-
-
Hu, S.M.1
Wang, G.Z.2
Jin, T.G.3
-
3
-
-
0030290228
-
The geometry of optimal degree reduction of Bézier curves
-
Brunnett B, Schreiber T, Braun J (1996) The geometry of optimal degree reduction of Bézier curves. Comput Aided Geom Des 13: 773-788
-
(1996)
Comput Aided Geom des
, vol.13
, pp. 773-788
-
-
Brunnett, B.1
Schreiber, T.2
Braun, J.3
-
4
-
-
0031084082
-
1-approximation with endpoint interpolation
-
1-approximation with endpoint interpolation. Comput Math Appl 33(5):67-77
-
(1997)
Comput Math Appl
, vol.33
, Issue.5
, pp. 67-77
-
-
Kim, H.O.1
Moon, S.Y.2
-
5
-
-
0033172461
-
Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bézier coefficients
-
Lutterkort D, Peters J, Reif U (1999) Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bézier coefficients. Comput Aided Geom Des 16:607-612
-
(1999)
Comput Aided Geom des
, vol.16
, pp. 607-612
-
-
Lutterkort, D.1
Peters, J.2
Reif, U.3
-
6
-
-
0034325021
-
Good degree reduction of Bézier curves using Jacobi polynomials
-
Kim HJ, Ahn YJ (2000) Good degree reduction of Bézier curves using Jacobi polynomials. Comput Math Appl 40:1205-1215
-
(2000)
Comput Math Appl
, vol.40
, pp. 1205-1215
-
-
Kim, H.J.1
Ahn, Y.J.2
-
7
-
-
0033721719
-
Degree reduction of interval Bézier curves
-
Chen F, Lou W (2000) Degree reduction of interval Bézier curves. Comput Aided Des 32:571-582
-
(2000)
Comput Aided des
, vol.32
, pp. 571-582
-
-
Chen, F.1
Lou, W.2
-
8
-
-
0036602444
-
Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity
-
Chen GD, Wang GJ (2002) Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity. Comput Aided Geom Des 19:365-377
-
(2002)
Comput Aided Geom des
, vol.19
, pp. 365-377
-
-
Chen, G.D.1
Wang, G.J.2
-
9
-
-
0036893952
-
Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction
-
Lee BG, Park Y, Yoo J (2002) Application of Legendre-Bernstein basis transformations to degree elevation and degree reduction. Comput Aided Geom Des 19:709-718
-
(2002)
Comput Aided Geom des
, vol.19
, pp. 709-718
-
-
Lee, B.G.1
Park, Y.2
Yoo, J.3
-
11
-
-
0346639288
-
Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients
-
Ahn YJ, Lee BG, Park Y, Yoo J (2004) Constrained polynomial degree reduction in the L2-norm equals best weighted Euclidean approximation of Bézier coefficients. Comput Aided Geom Des 21: 181-191
-
(2004)
Comput Aided Geom des
, vol.21
, pp. 181-191
-
-
Ahn, Y.J.1
Lee, B.G.2
Park, Y.3
Yoo, J.4
-
12
-
-
0029248790
-
Algorithm for degree reduction of B-spline curves
-
Piegl L, Tiller W (1996) Algorithm for degree reduction of B-spline curves. Comput Aided Des 27(2):101-110
-
(1996)
Comput Aided des
, vol.27
, Issue.2
, pp. 101-110
-
-
Piegl, L.1
Tiller, W.2
-
14
-
-
0037546950
-
Approximate merging of B-spline curves via knot adjustment and constrained optimization
-
Tai CL, Hu SM, Huang QX (2003) Approximate merging of B-spline curves via knot adjustment and constrained optimization. Comput Aided Des 35:893-899
-
(2003)
Comput Aided des
, vol.35
, pp. 893-899
-
-
Tai, C.L.1
Hu, S.M.2
Huang, Q.X.3
-
16
-
-
0024735277
-
A menagerie of rational B-spline circles
-
Piegl L, Tiller W (1989) A menagerie of rational B-spline circles. IEEE Comput Graph Appl 9(5):48-56
-
(1989)
IEEE Comput Graph Appl
, vol.9
, Issue.5
, pp. 48-56
-
-
Piegl, L.1
Tiller, W.2
|