-
1
-
-
0002078006
-
On the weak relative-injectivity of rings and modules
-
Springer-Verlag, Berlin and New York, MR 92d:16006
-
A. Al-Huzali, S.K. Jain and S.R. Lôpez-Permouth, On the weak relative-injectivity of rings and modules, Lecture Notes in Math., vol. 1448, Springer-Verlag, Berlin and New York, 1989, pp. 93-98. MR 92d:16006
-
(1989)
Lecture Notes in Math.
, vol.1448
, pp. 93-98
-
-
Al-Huzali, A.1
Jain, S.K.2
Lôpez-Permouth, S.R.3
-
2
-
-
0010662870
-
Radical properties of perfect modules
-
MR 47:1864
-
J.E. Björk, Radical properties of perfect modules, J. Reine Angew. Math. 245 (1972), 78-86. MR 47:1864
-
(1972)
J. Reine Angew. Math.
, vol.245
, pp. 78-86
-
-
Björk, J.E.1
-
3
-
-
0002429556
-
Rings in which every complement right ideal is a direct summand
-
MR 55:10519
-
A.W. Chatters and C.R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford Ser. (2) 28 (1977), 61-80. MR 55:10519
-
(1977)
Quart. J. Math. Oxford Ser.
, vol.2
, Issue.28
, pp. 61-80
-
-
Chatters, A.W.1
Hajarnavis, C.R.2
-
4
-
-
0003338455
-
Extending modules
-
Longman, Harlow, MR 96f:16008
-
Nguyen Viet Dung, Dinh Van Huynh, P. Smith, and R. Wisbauer, Extending modules, Pitman Res. Notes in Math., vol. 313, Longman, Harlow, 1994. MR 96f:16008
-
(1994)
Pitman Res. Notes in Math.
, vol.313
-
-
Dung, N.V.1
Van Huynh, D.2
Smith, P.3
Wisbauer, R.4
-
5
-
-
0003706840
-
-
Springer-Verlag, Berlin and New York, MR 55:383
-
C. Faith, Algebra. II: Ring Theory, Springer-Verlag, Berlin and New York, 1976. MR 55:383
-
(1976)
Algebra. II: Ring Theory
-
-
Faith, C.1
-
6
-
-
0010668675
-
Embedding modules in projectives. a report on a problem
-
Springer-Verlag, Berlin and New York, MR 84i:16001
-
C. Faith, Embedding modules in projectives. A report on a problem, Lecture Notes in Math., vol. 951, Springer-Verlag, Berlin and New York, 1982, pp. 21-40. MR 84i:16001
-
(1982)
Lecture Notes in Math.
, vol.951
, pp. 21-40
-
-
Faith, C.1
-
7
-
-
0009311968
-
Embedding torsionless modules in projectives
-
MR 92b:16016
-
C. Faith, Embedding torsionless modules in projectives, Publ. Mat. 34 (1990), 379-387. MR 92b:16016
-
(1990)
Publ. Mat.
, vol.34
, pp. 379-387
-
-
Faith, C.1
-
8
-
-
21344455799
-
Endomorphism rings of completely pure-injective modules
-
MR 96j:16029
-
J.L. Gömez Pardo and P.A. Guil Asensio, Endomorphism rings of completely pure-injective modules, Proc. Amer. Math. Soc. 124 (1996), 2301-2309. MR 96j:16029
-
(1996)
Proc. Amer. Math. Soc.
, vol.124
, pp. 2301-2309
-
-
Gömez Pardo, J.L.1
Guil Asensio, P.A.2
-
9
-
-
0011048022
-
A generalization of the \Vedderburn-Artin theorem
-
MR 89i:16013
-
S.K. Jain and S.R. Lôpez-Permouth, A generalization of the \Vedderburn-Artin theorem, Proc. Amer. Math. Soc. 106 (1989), 19-23. MR 89i:16013
-
(1989)
Proc. Amer. Math. Soc.
, vol.106
, pp. 19-23
-
-
Jain, S.K.1
Lôpez-Permouth, S.R.2
-
10
-
-
38249020048
-
Rings whose cyclics are essentially embeddable in projective modules
-
MR 90k:16016
-
S.K. Jain and S.R. Löpez-Permouth, Rings whose cyclics are essentially embeddable in projective modules, J. Algebra 128 (1990), 257-269. MR 90k:16016
-
(1990)
J. Algebra
, vol.128
, pp. 257-269
-
-
Jain, S.K.1
Löpez-Permouth, S.R.2
-
12
-
-
0001615916
-
Torsion-free and divisible modules over non-integral domains
-
MR 26:155
-
L.S. Levy, Torsion-free and divisible modules over non-integral domains, Canad. J. Math. 15 (1963), 132-151. MR 26:155
-
(1963)
Canad. J. Math.
, vol.15
, pp. 132-151
-
-
Levy, L.S.1
-
13
-
-
0010747071
-
On the endomorphism ring of a free module
-
MR 86g:16046
-
P. Menai, On the endomorphism ring of a free module, Publ. Mat. Univ. Autonoma Barcelona 27 (1983), 141-154. MR 86g:16046
-
(1983)
Publ. Mat. Univ. Autonoma Barcelona
, vol.27
, pp. 141-154
-
-
Menai, P.1
-
14
-
-
0000738623
-
A generalization of quasi-Frobenius rings
-
errata, 9 (1968), 120. MR 34:4305; MR 36:6443
-
B.L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373-387; errata, 9 (1968), 120. MR 34:4305; MR 36:6443
-
(1966)
J. Algebra
, vol.4
, pp. 373-387
-
-
Osofsky, B.L.1
|