-
1
-
-
34250466905
-
On the inversion of some differentiable mappings with singularities between Banach spaces
-
A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. (4) 93 (1972), 231-246.
-
(1972)
Ann. Mat. Pura Appl. (4)
, vol.93
, pp. 231-246
-
-
Ambrosetti, A.1
Prodi, G.2
-
2
-
-
0006798180
-
Complete integrability and perturbation of a nonlinear Dirichlet problem. I
-
M. S. Berger and F. T. Church, Complete integrability and perturbation of a nonlinear Dirichlet problem. I, Indiana Univ. Math. J. 28 (1979), no. 6, 935-952.
-
(1979)
Indiana Univ. Math. J.
, vol.28
, Issue.6
, pp. 935-952
-
-
Berger, M.S.1
Church, F.T.2
-
3
-
-
0009303159
-
Fourier transform restriction phenomena for certain lattice subsets and appli-cations to nonlinear evolution equations, II. The KdV-equation
-
J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and appli-cations to nonlinear evolution equations, II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262.
-
(1993)
Geom. Funct. Anal.
, vol.3
, Issue.3
, pp. 209-262
-
-
Bourgain, J.1
-
4
-
-
0013464165
-
Critical sets of nonlinear Sturm-Liouville operators of Ambrosetti-Prodi type
-
H. Bueno and C. Tomei, Critical sets of nonlinear Sturm-Liouville operators of Ambrosetti-Prodi type, Nonlinearity 15 (2002), no. 4, 1073-1077.
-
(2002)
Nonlinearity
, vol.15
, Issue.4
, pp. 1073-1077
-
-
Bueno, H.1
Tomei, C.2
-
5
-
-
0037374188
-
Results on infinite-dimensional topology and applications to the structure of the critical set of nonlinear Sturm-Liouville operators
-
D. Burghelea, N. C. Saldanha, and C. Tomei, Results on infinite-dimensional topology and applications to the structure of the critical set of nonlinear Sturm-Liouville operators, J. Differential Equations 188 (2003), no. 2, 569-590.
-
(2003)
J. Differential Equations
, vol.188
, Issue.2
, pp. 569-590
-
-
Burghelea, D.1
Saldanha, N.C.2
Tomei, C.3
-
6
-
-
84990619700
-
Solution of the inverse spectral problem for an impedance with integrable derivative. I
-
C. F. Coleman and J. R. McLaughlin, Solution of the inverse spectral problem for an impedance with integrable derivative. I, Comm. Pure Appl. Math. 46 (1993), no. 2, 145-184.
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, Issue.2
, pp. 145-184
-
-
Coleman, C.F.1
McLaughlin, J.R.2
-
7
-
-
84990580984
-
Solution of the inverse spectral problem for an impedance with integrable derivative. II
-
_, Solution of the inverse spectral problem for an impedance with integrable derivative. II, Comm. Pure Appl. Math. 46 (1993), no. 2, 185-212.
-
(1993)
Comm. Pure Appl. Math.
, vol.46
, Issue.2
, pp. 185-212
-
-
-
8
-
-
0038806261
-
Sharp global well-posedness for KdV and modified KdV on ℝ and double-struck T sign
-
J. Colliander, M. Keel, G. Staffllani, H. Takaoka, and T. Tao, Sharp global well-posedness for KdV and modified KdV on ℝ and double-struck T sign, J. Amer. Math. Soc. 16 (2003), no. 3, 705-749.
-
(2003)
J. Amer. Math. Soc.
, vol.16
, Issue.3
, pp. 705-749
-
-
Colliander, J.1
Keel, M.2
Staffllani, G.3
Takaoka, H.4
Tao, T.5
-
9
-
-
84966242023
-
Commutation methods applied to the mKdV-equation
-
F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV-equation, Trans. Amer. Math. Soc. 324 (1991), no. 2, 465-525.
-
(1991)
Trans. Amer. Math. Soc.
, vol.324
, Issue.2
, pp. 465-525
-
-
Gesztesy, F.1
Schweiger, W.2
Simon, B.3
-
10
-
-
0035922968
-
Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials
-
T. Kappeler and C. Möhr, Estimates for periodic and Dirichlet eigenvalues of the Schrödinger operator with singular potentials, J. Funct. Anal. 186 (2001), no. 1, 62-91.
-
(2001)
J. Funct. Anal.
, vol.186
, Issue.1
, pp. 62-91
-
-
Kappeler, T.1
Möhr, C.2
-
11
-
-
3142721972
-
-
Preprint Series, Institute of Mathematics, University of Zurich
-
T. Kappeler, C. Möhr, and P. Topalov, Birkhoff coordinates for KdV on phase spaces of distributions, Preprint Series, Institute of Mathematics, University of Zurich, 2003.
-
(2003)
Birkhoff Coordinates for KdV on Phase Spaces of Distributions
-
-
Kappeler, T.1
Möhr, C.2
Topalov, P.3
-
13
-
-
3142738102
-
-
Preprint Series, Institute of Mathematics, University of Zurich
-
-1 (double-struck T sign, ℝ), Preprint Series, Institute of Mathematics, University of Zurich, 2003.
-
(2003)
-1 (double-struck T sign, ℝ)
-
-
-
14
-
-
3142738102
-
-
Preprint Series, Institute of Mathematics, University of Zurich
-
-1 (double-struck T sign, ℝ), Preprint Series, Institute of Mathematics, University of Zurich, 2003.
-
(2003)
-1 (double-struck T sign, ℝ)
-
-
-
15
-
-
3142724886
-
-1 (T) and its applications
-
-1 (T) and its applications, Pliska Stud. Math. Bulgar. 15 (2003), 171-188.
-
(2003)
Pliska Stud. Math. Bulgar.
, vol.15
, pp. 171-188
-
-
-
17
-
-
0030528276
-
A bilinear estimate with applications to the KdV equation
-
C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573-603.
-
(1996)
J. Amer. Math. Soc.
, vol.9
, Issue.2
, pp. 573-603
-
-
Kenig, C.E.1
Ponce, G.2
Vega, L.3
-
18
-
-
0000243017
-
Inverse problem for periodic "weighted" operators
-
E. Korotyaev, Inverse problem for periodic "weighted" operators, J. Funct. Anal. 170 (2000), no. 1, 188-218.
-
(2000)
J. Funct. Anal.
, vol.170
, Issue.1
, pp. 188-218
-
-
Korotyaev, E.1
-
19
-
-
0041332954
-
Characterization of the spectrum of Schrödinger operators with periodic distributions
-
_, Characterization of the spectrum of Schrödinger operators with periodic distributions, Int. Math. Res. Not. 2003 (2003), no. 37, 2019-2031.
-
(2003)
Int. Math. Res. Not.
, vol.2003
, Issue.37
, pp. 2019-2031
-
-
-
20
-
-
0003109280
-
The basic propositions of the theory of λ-zones of stability of a canonical system of linear differential equations with periodic coefficients
-
Izdat. Akad. Nauk SSSR, Moscow
-
M. G. Kreǐn, The basic propositions of the theory of λ-zones of stability of a canonical system of linear differential equations with periodic coefficients, In memory of Aleksandr Aleksandrovič Andronov, Izdat. Akad. Nauk SSSR, Moscow, 1955, pp. 413-498.
-
(1955)
Memory of Aleksandr Aleksandrovič Andronov
, pp. 413-498
-
-
Kreǐn, M.G.1
-
21
-
-
0000968864
-
On the characteristic function A(A) of a linear canonical system of differential equations of second order with periodic coefficients
-
Russian
-
_, On the characteristic function A(A) of a linear canonical system of differential equations of second order with periodic coefficients, Prikl. Mat. Mekh. 21 (1957), 320-329 (Russian).
-
(1957)
Prikl. Mat. Mekh.
, vol.21
, pp. 320-329
-
-
-
22
-
-
0008490019
-
Non-homogeneous boundary value problems and applications. Vol. I
-
Springer-Verlag, New York
-
J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, vol. 181, Springer-Verlag, New York, 1972.
-
(1972)
Die Grundlehren der Mathematischen Wissenschaften
, vol.181
-
-
Lions, J.-L.1
Magenes, E.2
-
23
-
-
0013136731
-
Sur une équation transcendante et les équations differentielles linéaires du second ordre à coefficients périodiques
-
French
-
M. Lyapunov, Sur une équation transcendante et les équations differentielles linéaires du second ordre à coefficients périodiques, C. R. Acad. Sci. Paris 18 (1899), 1085-1088 (French).
-
(1899)
C. R. Acad. Sci. Paris
, vol.18
, pp. 1085-1088
-
-
Lyapunov, M.1
-
24
-
-
0012094527
-
Hill's equation
-
Interscience Publishers, New York
-
W. Magnus and S. Winkler, Hill's Equation, Interscience Tracts in Pure and Applied Mathematics, no. 20, Interscience Publishers, New York, 1966.
-
(1966)
Interscience Tracts in Pure and Applied Mathematics
, Issue.20
-
-
Magnus, W.1
Winkler, S.2
-
25
-
-
0001123683
-
Marin singularities and global geometry in a class of ordinary differential operators
-
I. Malta, N. C. Saldanha, and C. Tomei, Marin singularities and global geometry in a class of ordinary differential operators, Topol. Methods Nonlinear Anal. 10 (1997), no. 1, 137-169.
-
(1997)
Topol. Methods Nonlinear Anal.
, vol.10
, Issue.1
, pp. 137-169
-
-
Malta, I.1
Saldanha, N.C.2
Tomei, C.3
-
26
-
-
0001072287
-
Geometry of some simple nonlinear differential operators
-
H. P. McKean and J. C. Scovel, Geometry of some simple nonlinear differential operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 2, 299-346.
-
(1986)
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
, vol.13
, Issue.2
, pp. 299-346
-
-
McKean, H.P.1
Scovel, J.C.2
-
27
-
-
36849110505
-
Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation
-
R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9 (1968), 1202-1204.
-
(1968)
J. Math. Phys.
, vol.9
, pp. 1202-1204
-
-
Miura, R.M.1
-
29
-
-
22944464221
-
Schrödinger operators with singular potentials from the space of multipliers
-
M. Neǐman-zade and A. Shkalikov, Schrödinger operators with singular potentials from the space of multipliers, Math. Notes 66 (2000), no. 5-6, 599-607.
-
(2000)
Math. Notes
, vol.66
, Issue.5-6
, pp. 599-607
-
-
Neǐman-Zade, M.1
Shkalikov, A.2
-
30
-
-
0037918331
-
Inverse spectral theory
-
Academic Press, Massachusetts
-
J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Pure and Applied Mathematics, vol. 130, Academic Press, Massachusetts, 1987.
-
(1987)
Pure and Applied Mathematics
, vol.130
-
-
Pöschel, J.1
Trubowitz, E.2
-
31
-
-
0009763417
-
Singularity theory and bifurcation phenomena in differential equations
-
Topological Nonlinear Analysis, II (Frascati, 1995), Birkhäuser Boston, Massachusetts
-
B. Ruf, Singularity theory and bifurcation phenomena in differential equations, Topological Nonlinear Analysis, II (Frascati, 1995), Progr. Nonlinear Differential Equations Appl., vol. 27, Birkhäuser Boston, Massachusetts, 1997, pp. 315-395.
-
(1997)
Progr. Nonlinear Differential Equations Appl.
, vol.27
, pp. 315-395
-
-
Ruf, B.1
-
32
-
-
0039801414
-
Sturm-Liouville operators with singular potentials
-
A. M. Savchuk and A. A. Shkalikov, Sturm-Liouville operators with singular potentials, Math. Notes 66 (1999), no. 5-6, 741-753.
-
(1999)
Math. Notes
, vol.66
, Issue.5-6
, pp. 741-753
-
-
Savchuk, A.M.1
Shkalikov, A.A.2
|