메뉴 건너뛰기




Volumn 64, Issue 3, 2004, Pages 878-901

On the solution to the Riemann problem for the compressible duct flow

Author keywords

Nonstrictly hyperbolic; Nozzle flow; Resonance

Indexed keywords

DUCTS; ENTROPY; MATHEMATICAL MODELS; NONLINEAR EQUATIONS; NOZZLES; PROBLEM SOLVING; RESONANCE;

EID: 3142733781     PISSN: 00361399     EISSN: None     Source Type: Journal    
DOI: 10.1137/S0036139903424230     Document Type: Article
Times cited : (77)

References (18)
  • 1
    • 0037431195 scopus 로고    scopus 로고
    • Discrete equations for physical and numerical compressible multiphase mixtures
    • R. ABGRALL AND R. SAUREL, Discrete equations for physical and numerical compressible multiphase mixtures, J. Comput. Phys., 186 (2003), pp. 361-396.
    • (2003) J. Comput. Phys. , vol.186 , pp. 361-396
    • Abgrall, R.1    Saurel, R.2
  • 2
    • 3142773689 scopus 로고    scopus 로고
    • Ph.D. thesis, Institut für Analysis und Numerik, Universität Magdeburg
    • N. ANDRIANOV, Analytical and numerical investigation of two-phase flows, Ph.D. thesis, Institut für Analysis und Numerik, Universität Magdeburg, 2003; available athttp://www-ian.math.uni-magdeburg.de/home/andriano/ diser.html.
    • (2003) Analytical and Numerical Investigation of Two-phase Flows
    • Andrianov, N.1
  • 4
    • 1842683264 scopus 로고    scopus 로고
    • The Riemann problem for the Baer-Nunziato model of two-phase flows
    • N. ANDRIANOV AND G. WARNECKE, The Riemann problem for the Baer-Nunziato model of two-phase flows, J. Comput. Phys., 195 (2004), pp. 434-464.
    • (2004) J. Comput. Phys. , vol.195 , pp. 434-464
    • Andrianov, N.1    Warnecke, G.2
  • 5
    • 0022808623 scopus 로고
    • A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials
    • M. R. BAER AND J. W. NUNZIATO, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flows, 12 (1986), pp. 861-889.
    • (1986) Int. J. Multiphase Flows , vol.12 , pp. 861-889
    • Baer, M.R.1    Nunziato, J.W.2
  • 6
    • 0004334072 scopus 로고    scopus 로고
    • CLAWPACK software, available at http://www.amath.washington.edu/~claw.
    • CLAWPACK Software
  • 8
    • 0000997393 scopus 로고
    • The entropy rate admissibility criterion for solutions of hyperbolic conservation laws
    • C. DAPERMOS, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Differential Equations, 14 (1973), pp. 202-212.
    • (1973) J. Differential Equations , vol.14 , pp. 202-212
    • Dapermos, C.1
  • 10
    • 0001522672 scopus 로고
    • Definition and weak stability of nonconservative products
    • G. DAL MASO, P. G. LEFLOCH, AND F. MURAT, Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74 (1995), pp. 483-548.
    • (1995) J. Math. Pures Appl. , vol.74 , pp. 483-548
    • Dal Maso, G.1    Lefloch, P.G.2    Murat, F.3
  • 11
    • 0043140167 scopus 로고    scopus 로고
    • On the inadmissibility of non-evolutionary shocks
    • S. A. E. G. FALLE AND S. S. KOMISSAROV, On the inadmissibility of non-evolutionary shocks, J. Plasma Phys., 65 (2001), pp. 29-58.
    • (2001) J. Plasma Phys. , vol.65 , pp. 29-58
    • Falle, S.A.E.G.1    Komissarov, S.S.2
  • 14
    • 0026931381 scopus 로고
    • Nonlinear resonance in systems of conservation laws
    • E. ISAACSON AND B. TEMPLE, Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math., 52 (1992), pp. 1260-1278.
    • (1992) SIAM J. Appl. Math. , vol.52 , pp. 1260-1278
    • Isaacson, E.1    Temple, B.2
  • 15
    • 0029323645 scopus 로고
    • Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law
    • E. ISAACSON AND B. TEMPLE, Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math., 55 (1995), pp. 625-640.
    • (1995) SIAM J. Appl. Math. , vol.55 , pp. 625-640
    • Isaacson, E.1    Temple, B.2
  • 17
    • 0000308880 scopus 로고    scopus 로고
    • Wave propagation algorithms for multi-dimensional hyperbolic systems
    • R. J. LEVEQUE, Wave propagation algorithms for multi-dimensional hyperbolic systems, J. Comput. Phys., 131 (1997), pp. 327-353.
    • (1997) J. Comput. Phys. , vol.131 , pp. 327-353
    • Leveque, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.