-
1
-
-
77956725039
-
Theory of propagation of elastic waves in a fluid-saturated porous solid: Low-frequency range
-
Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Low-frequency range. J. Acoust. Soc. Amer., 1956, 28:168-178
-
(1956)
J. Acoust. Soc. Amer.
, vol.28
, pp. 168-178
-
-
Biot, M.A.1
-
2
-
-
84918383033
-
Theory of propagation of elastic waves in a fluid-saturated porous solid: Higher-frequency range
-
Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Higher-frequency range. J. Acoust. Soc. Amer., 1956, 28:179-191
-
(1956)
J. Acoust. Soc. Amer.
, vol.28
, pp. 179-191
-
-
Biot, M.A.1
-
3
-
-
36749117593
-
Observation of a second Bulk compressional wave in porous media at ultrasonic frequences
-
Plona T J. Observation of a second Bulk compressional wave in porous media at ultrasonic frequences. Appl. Phys., 1980, 36:259-261
-
(1980)
Appl. Phys.
, vol.36
, pp. 259-261
-
-
Plona, T.J.1
-
5
-
-
0027188678
-
One-dimensional transient wave propagation in fluid-saturated incompressible porous media
-
de Boer R, Ehlers R, Liu Z. One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Arch. Appl. Mech., 1993, 63:59-72
-
(1993)
Arch. Appl. Mech.
, vol.63
, pp. 59-72
-
-
de Boer, R.1
Ehlers, R.2
Liu, Z.3
-
6
-
-
0026170502
-
An integral formulation for dynamic poroelasticity
-
Dominguez J. An integral formulation for dynamic poroelasticity. J. Appl. Mech. ASME, 1991,58(3): 588-590
-
(1991)
J. Appl. Mech. ASME
, vol.58
, Issue.3
, pp. 588-590
-
-
Dominguez, J.1
-
8
-
-
0033534007
-
Wave propagation analysis of two-phase saturated porous media using coupled finite-infinite element method
-
Khalili N, Yazdchi M, Valliappan S. Wave propagation analysis of two-phase saturated porous media using coupled finite-infinite element method. Soil Dynamics and Earthquake Engineering, 1999, 18: 533-553
-
(1999)
Soil Dynamics and Earthquake Engineering
, vol.18
, pp. 533-553
-
-
Khalili, N.1
Yazdchi, M.2
Valliappan, S.3
-
9
-
-
0034119137
-
Finite element method for the equation of waves in fluid-saturated porous media
-
(in Chinese)
-
Shao X M, Lan Z L. Finite element method for the equation of waves in fluid-saturated porous media. Chinese J. Geophys. (in Chinese), 2000,43(2):264-277
-
(2000)
Chinese J. Geophys.
, vol.43
, Issue.2
, pp. 264-277
-
-
Shao, X.M.1
Lan, Z.L.2
-
10
-
-
2342426421
-
Modelling of seismic wave propagation in Hetero geneous poroelastic media using a high-order staggered finite-difference method
-
(in Chinese)
-
Wang X M, Zhang H L, Wang D. Modelling of seismic wave propagation in Hetero geneous poroelastic media using a high-order staggered finite-difference method. Chinese J. Geophys. (in Chinese), 2003, 46(6): 842-849
-
(2003)
Chinese J. Geophys.
, vol.46
, Issue.6
, pp. 842-849
-
-
Wang, X.M.1
Zhang, H.L.2
Wang, D.3
-
11
-
-
0037702901
-
A study of the construction and application of a Daubechies wavelet-based beam element
-
Ma Junxing, Xue Jijun. A study of the construction and application of a Daubechies wavelet-based beam element. Finite Element in Analysis and Design, 2003, 39: 965-975
-
(2003)
Finite Element in Analysis and Design
, vol.39
, pp. 965-975
-
-
Ma, J.1
Xue, J.2
-
12
-
-
0010887193
-
Orthonormal wavelets, analysis of operators and applications to numerical analysis
-
Chui C ed. New York: Academic Press
-
Jaffard S, Laurencop P. Orthonormal wavelets, analysis of operators and applications to numerical analysis. In: Chui C ed. Wavelets: A Tutorial in Theory and Applications. New York: Academic Press, 1992. 543-601
-
(1992)
Wavelets: A Tutorial in Theory and Applications
, pp. 543-601
-
-
Jaffard, S.1
Laurencop, P.2
-
13
-
-
0029342725
-
A class of finite element methods based on orthonormal compactly supported wavelets
-
Ko J, Kurdila A J. A class of finite element methods based on orthonormal compactly supported wavelets. Computational Mechanics, 1995,16(4):235-244
-
(1995)
Computational Mechanics
, vol.16
, Issue.4
, pp. 235-244
-
-
Ko, J.1
Kurdila, A.J.2
-
14
-
-
84990575058
-
Orthonormal basis of compactly supported wavelet
-
Daubechies I. Orthonormal basis of compactly supported wavelet. Commun. Pure Appl. Math., 1988,41: 909-996
-
(1988)
Commun. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
15
-
-
0000910653
-
Recent results in wavelet applications
-
Daubechies I. Recent results in wavelet applications. J. Electron. Imaging, 1998, 7:719-724
-
(1998)
J. Electron. Imaging
, vol.7
, pp. 719-724
-
-
Daubechies, I.1
-
16
-
-
0021510599
-
A transmitting boundary for transient wave analyses
-
Liao Z P, Wong H L, Yang B P, et al. A transmitting boundary for transient wave analyses. Scientia Sinica (A), 1984, 27(10):1063-1076
-
(1984)
Scientia Sinica (A)
, vol.27
, Issue.10
, pp. 1063-1076
-
-
Liao, Z.P.1
Wong, H.L.2
Yang, B.P.3
-
17
-
-
0021502791
-
A transmitting boundary for the numerical simulation of elastic wave propagation
-
Liao Z P, Wong H L. A transmitting boundary for the numerical simulation of elastic wave propagation. Soil Dynamics and Earthquake Engineering, 1984,3(4):174-183
-
(1984)
Soil Dynamics and Earthquake Engineering
, vol.3
, Issue.4
, pp. 174-183
-
-
Liao, Z.P.1
Wong, H.L.2
-
18
-
-
0032217559
-
Applications of wavelet Galerkin FEM to bending of beam and plate structures
-
(in Chinese)
-
Zhou Y H, Wang J Z, Zheng X J. Applications of wavelet Galerkin FEM to bending of beam and plate structures. Applied Mathematics and Mechanics (in Chinese), 1998, 19(8):697-706
-
(1998)
Applied Mathematics and Mechanics
, vol.19
, Issue.8
, pp. 697-706
-
-
Zhou, Y.H.1
Wang, J.Z.2
Zheng, X.J.3
|