-
4
-
-
23044524794
-
Characterization of continuous, four-coefficient scaling functions via matrix spectral radius
-
M. Bröker, and X. Zhou Characterization of continuous, four-coefficient scaling functions via matrix spectral radius SIAM J. Matrix Anal. Appl. 22 2000 242 257
-
(2000)
SIAM J. Matrix Anal. Appl.
, vol.22
, pp. 242-257
-
-
Bröker, M.1
Zhou, X.2
-
6
-
-
0034414416
-
Characterization of joint spectral radius via trace
-
Q. Chen, and X. Zhou Characterization of joint spectral radius via trace Linear Algebra Appl. 315 2000 175 188
-
(2000)
Linear Algebra Appl.
, vol.315
, pp. 175-188
-
-
Chen, Q.1
Zhou, X.2
-
7
-
-
0001064319
-
Analyses multirésolutions et filtres miroirs en quadrature
-
A. Cohen, and Ondelettes, analyses multirésolutions et filtres miroirs en quadrature Ann. Inst. H. Poincare 7 1990 57 61
-
(1990)
Ann. Inst. H. Poincare
, vol.7
, pp. 57-61
-
-
Cohen, A.1
Ondelettes2
-
8
-
-
0026626444
-
The characterization of continuous, four-coefficient scaling functions and wavelets
-
D. Colella, and C. Heil The characterization of continuous, four-coefficient scaling functions and wavelets IEEE Trans. Inform. Theory 38 1992 876 881
-
(1992)
IEEE Trans. Inform. Theory
, vol.38
, pp. 876-881
-
-
Colella, D.1
Heil, C.2
-
9
-
-
21344484187
-
Characterizations of scaling functions: Continuous solutions
-
D. Colella, and C. Heil Characterizations of scaling functions: continuous solutions SIAM J. Matrix Anal. Appl. 15 1994 496 518
-
(1994)
SIAM J. Matrix Anal. Appl.
, vol.15
, pp. 496-518
-
-
Colella, D.1
Heil, C.2
-
10
-
-
0000160525
-
Two-scale difference equations II. Infinite matrix products, local regularity bounds and fractals
-
I. Daubechies, and J.C. Lagarias Two-scale difference equations II. Infinite matrix products, local regularity bounds and fractals SIAM J. Math. Anal. 23 1992 1031 1079
-
(1992)
SIAM J. Math. Anal.
, vol.23
, pp. 1031-1079
-
-
Daubechies, I.1
Lagarias, J.C.2
-
11
-
-
0001219086
-
Sets of matrices all infinite products of which converge
-
I. Daubechies, and J.C. Lagarias Sets of matrices all infinite products of which converge Linear Algebra Appl. 162 1992 227 263
-
(1992)
Linear Algebra Appl.
, vol.162
, pp. 227-263
-
-
Daubechies, I.1
Lagarias, J.C.2
-
12
-
-
0040967838
-
Spectral radius formulas for subdivision operators
-
Academic Press Boston, MA
-
T.N.T. Goodman, C.A. Micchelli, and J.D. Ward Spectral radius formulas for subdivision operators Recent Advances in Wavelet Analysis, Wavelet Anal. Appl. vol. 3 1994 Academic Press Boston, MA 335 360
-
(1994)
Recent Advances in Wavelet Analysis, Wavelet Anal. Appl.
, vol.3
, pp. 335-360
-
-
Goodman, T.N.T.1
Micchelli, C.A.2
Ward, J.D.3
-
13
-
-
9644300965
-
Computing the joint spectral radius
-
G. Gripenberg Computing the joint spectral radius Linear Algebra Appl. 234 1996 43 60
-
(1996)
Linear Algebra Appl.
, vol.234
, pp. 43-60
-
-
Gripenberg, G.1
-
14
-
-
0002229298
-
Dilation equation and the smoothness of compactly supported wavelets
-
J.L. Benedetto M.W. Frazier CRC Press Boca Raton
-
C. Heil, and D. Colella Dilation equation and the smoothness of compactly supported wavelets J.L. Benedetto M.W. Frazier Wavelets: Mathematics and Applications 1994 CRC Press Boca Raton 163 201
-
(1994)
Wavelets: Mathematics and Applications
, pp. 163-201
-
-
Heil, C.1
Colella, D.2
-
15
-
-
0003089663
-
Continuity of the joint spectral radius: Application to wavelets
-
A. Bojanczyk G. Cybenko Linear Algebra for Signal Processing, Springer-Verlag New York
-
C. Heil, and G. Strang Continuity of the joint spectral radius: application to wavelets A. Bojanczyk G. Cybenko Linear Algebra for Signal Processing IMA Vol. Math. Appl. 1995 Springer-Verlag New York
-
(1995)
IMA Vol. Math. Appl.
-
-
Heil, C.1
Strang, G.2
-
16
-
-
7544234254
-
An efficient lower bound for the generalized spectral radius of a set of matrices
-
M. Maesumi An efficient lower bound for the generalized spectral radius of a set of matrices Linear Algebra Appl. 240 1996 1 7
-
(1996)
Linear Algebra Appl.
, vol.240
, pp. 1-7
-
-
Maesumi, M.1
-
18
-
-
0000719845
-
A note on the joint spectral radius
-
G.C. Rota, and G. Strang A note on the joint spectral radius Indog. Math. 22 1960 379 381
-
(1960)
Indog. Math.
, vol.22
, pp. 379-381
-
-
Rota, G.C.1
Strang, G.2
-
19
-
-
0030651078
-
The Lyapunov exponent and joint spectral radius of pairs of matrices are hard, when not impossible, to compute and to approximate
-
J.N. Tsitsiklis, and V.D. Blondel The Lyapunov exponent and joint spectral radius of pairs of matrices are hard, when not impossible, to compute and to approximate Math. Control, Signals Syst. 10 1997 31 41
-
(1997)
Math. Control, Signals Syst.
, vol.10
, pp. 31-41
-
-
Tsitsiklis, J.N.1
Blondel, V.D.2
|